Ток короткого замыкания на шинах высокого напряжения

Расчёт токов короткого замыкания в сети высокого напряжения

Токи короткого замыкания на шинах 110кВ взяты по данным ВПЭС и равны:

I (3) К-1 max=2200А раб. 1940

I (3) К-1 min=1300Араб.1200

В дипломном проекте этот расчет ведется с целью проверки выбранной аппаратуры, проводов и кабелей на динамическую и термическую стойкость

Для расчёта схемы замещения запишем следующие исходные параметры элементов схемы:

Трансформаторы Т-1 и Т-2 типаТДТН-10000/110/35/10

Uвн=115кВ Uк вн-сн=10,5%

На подстанции «Нерчинск» установлены два трёхобмоточных трансформатора мощностью по 10МВ*А, напряжением 115/38,5/11кВ.

Работа трансформаторов отдельная.

Принимаю трансформатор типа ТДТН-10000/110 со следующими параметрами:

Для выбора и проверки силового оборудования расчёт ведём приближённым приведением в относительных единицах.

image035

Расчёт токов КЗ на шинах 110кВ

Воспользуемся методом точного приведения в относительных единицах (ТПОЕ)

Принимаем базисные величины: Для Т-1 и Т-2

базисное напряжение Uб=Uср ном. =115 кВ;

image036

сопротивление базисное (3.2)

image037 image038 image039 image040 image041 image042 image043 image044 image045 image046 image047image048

Uкн=0,5 (Uк вн-нн+Uк сн-нн-Uк вн-сн) =0,5 (17,5+6,5-10,5) =6,75%

image049

image050

image051

image052

Х1=Хс. max+Xл. max=0,022+0,078=0,1о. е.

image053

Х2=XТ-1в // ХТ-2в==0,535о. е. (3.9)

image054

image055 image056image057

Х1=Хс. min+Xл. min=0,038+0,157+=0, 195о. е. (3.12)

image059

image058image060

Расчёт токов КЗ на шинах 35кВ

Принимаем базисные величины:

базисное напряжение Uб=Uср ном. =38,5 кВ;

image061

сопротивление базисное (3.2)

image062 image063 image064 image065 image066 image067 image068 image069 image070 image071 image072image073

image074

image075

для трансформатора Т-3

Линии ВЛ-237: провод АС-70/11 L=0,02м, Худ=0,4Ом

image076

image077image078

image079

image080

Х1=Хс. max+Xл. max+0,08+0,0025=0,0825о. е. (3.15)

image081

Х2=XТ-1в // ХТ-2в ==о. е. (3.16)

Х3= Хл2+ХТ3 (0,00003+0,291) =0,29103о. е.

Х4= X1+Х2=0,0825+0,0595=0,142о. е. (3.9)

image082

image083 image084image085

Х1=Хс. min+Xл. min+XТ-1в=0,16+0,038+0,119=0,317о. е. (3.11)

Х2=ХТ-3+Хл2=0,291+0,00006=0,29106о. е. (3.17)

Источник

Короткое замыкание сети или других источников питания

Под коротким замыканием (КЗ) понимают особый случай, когда соединены 2 проводника электрического тока разных потенциалов или фаз электрического прибора между собой или землей. В месте соединения проводников происходит резкое увеличение значения силы электрического тока с превышением максимально допустимого параметра. Это приводит к остановке нормального функционирование прибора и смежных элементов.

02 korotkoe zamykani 1

По упрощенной формулировке представленный тип замыкания является любым нештатным и незапланированным соединением проводников электричества, имеющих разное значение потенциала. Это могут быть, к примеру, фаза и ноль, что приводит к образованию токов разрушительного действия.

Явление опасно для здоровья человека и его имущества. КЗ вызывает не только сбой оборудования, остановку работы электроприборов. Если пренебрегать правилами безопасности, то это потенциально может обернуться полным выходом из строя аппаратов или их отдельных частей с невозможностью восстановления. Также может возникнуть возгорание, приводящее к пагубным последствиям для жизни людей, их имущества и окружающей среды.

Расчет тока короткого замыкания

03 korotkoe zamykani 2

Чтобы понимать, почему возникает этот процесс, необходимо провести расчет значений токов короткого замыкания. Для этого надо знать закон Ома: «Значение силы тока в некотором промежутке электрической цепи является прямо пропорциональным значению напряжения и обратно пропорциональным сопротивлению тока на этом промежутке». Это основополагающий закон электрики, который изучается даже в школьной программе. Для большей наглядности, следует обозначить его формулой: I=U/R, где:

Любое электрооборудование, подключенное к бытовой или промышленной электрической цепи, является активным сопротивлением. Параметр напряжения сети бытового назначения — 220 В (в некоторых случаях 230 В). Представленное значение неизменно. Чем выше значение сопротивления прибора (проводника или некоторого материала), подключенного к электропитанию, тем меньшей будет величина электрического тока.

Для расчёта тока короткого замыкания лучше воспользоваться более «продвинутой» формой закона Ома, называемой законом Ома для полной цепи.

kz 2 om

Эта форма закона Ома также изучается в школьной программе, однако мало кто о ней помнит. А ведь именно она применяется для расчёта тока КЗ. Дело в том, что если сопротивление внешних элементов цепи равно 0, то странного деления на ноль не появится, а вместо этого ток будет вполне конкретно и точно вычисляем как результат деления ЭДС источника на внутреннее сопротивление источника напряжения:

Iкз=ε / r

Конечно в случае, если КЗ возникает в доме или квартире — от места замыкания до точки возникновения ЭДС ток проходит через проводку. И неважно, медные это провода или изготовленные из алюминия — они обладают сопротивлением. И в таком случае R не равно нулю. Чему же оно равно — читаем дальше.

Пример 1. Сеть с напряжением 220–230В

Давайте возьмем для конкретного примера: длину проводки 100 м и площадь сечения проводов 2,5 мм² и затем посмотрим каково же будет их сопротивление в случае, если они сделаны из меди.

Формула, также известная из учебника физики любой самой средней школы, гласит:

R=ρ·L/S,

ρ — удельное сопротивление меди, равное приблизительно 0,017–0,018 Ом·мм²/м;

L — длина проводника, выраженная в метрах;

S — площадь проводника, выраженная в мм².

Учтем, что подводящих электроэнергию провода не один, а два (ток приходит по одному проводу и уходит по второму), поэтому длина провода L при расчёте удваивается:

R=0.018·2·100/2,5=1,44 Ом

Итак, теперь видно, что провода имеют достаточно большое сопротивление. Чтобы теперь прикинуть ток КЗ можно воспользоваться законом Ома. Внутреннее сопротивление источника питания нам не известно, но как видно из формулы закона Ома для полной цепи, что чем оно больше, тем меньше будет ток КЗ. Следовательно, приняв r=0 мы найдем максимально возможный ток КЗ при вычисленном R=1,44 Ом.

Также примем, что напряжение питания в сети также максимально возможное, и составляет 230+10%=253 В. В таком случае ток короткого замыкания будет равен:

Iкз=253/1,44 = 175,7 А

Итак, мы провели расчет для конкретного питающего проводника. Для проводки с другими параметрами вычисление может быть произведено аналогичным образом.

Пример 2. Аккумуляторная батарея

Если КЗ возникает непосредственно у источника ЭДС (с таким явлением мы можем встретиться в случае «коротыша» бытового или автомобильного аккумулятора или батареи питания), то в таком случае внешнее сопротивление R≈0. Следовательно, для расчета понадобится знать внутреннее сопротивление r максимально точно (иначе опять возникнет деление на ноль и ничего стоящего мы не насчитаем). Вычислить его не составит труда, если у вас имеется сопротивление (резистор) и мультиметр.

Читайте также:  Что означают цветные полосы на шинах кама

Теперь давайте рассмотрим конкретный пример. Допустим, имеется автомобильный аккумулятор на 12В. Как необходимо действовать, чтобы определить его ток КЗ.

Нам понадобится резистор номиналом 10 Ом на 15Вт, который поможет выполнить необходимый эксперимент:

Если вы ещё не догадались что за формулы были применены, то вот подсказки:

r=Uхх–Iн·Uн,

Iкз=Uхх/r,

Uхх — напряжение холостого хода источника питания;

— ток, отдаваемый источником питания под нагрузкой;

— напряжение источника питания под нагрузкой.

Как видно из формул, само значение нагрузки знать не нужно, тем не менее оно подбирается таким образом, чтобы погрешность измерения прибора не давала слишком большой разброс результата (если нагрузка будет незначительно «просаживать» напряжение источника питания, то есть Uхх, то точность результата будет крайне низкой).

Причины возникновения КЗ

Теперь кратко пробежимся по возможным причинам возникновения КЗ.

04 korotkoe zamykani 3

Распространенные причины появления КЗ следующие:

Отрицательное воздействие КЗ для человека и его имущества

КЗ, в зависимости от места возникновения, приводит к пагубным последствиям для имущества и безопасности жизни человека. К таковым относят:

05 korotkoe zamykani 4

Виды КЗ

Электричество используется повсеместно и бытовой и промышленной сфере. Чтобы свести риск появления короткого замыкания к минимуму, разработан ряд мероприятий и устройств по обеспечению защиты от КЗ. Однако, чтобы точно понимать в каком случае и какой прибор использовать, нужно знать виды замыкания. Основными из них являются:

Доля однофазных КЗ составляет 65% повреждений, 2 фазы с землей — 20%, двухфазных — 10%, трехфазных — 5%. Часто случаются сложные виды повреждений, сопровождающиеся многократной несимметрией. Это означает тип замыкания различных фаз, происходящего в нескольких точках единовременно.

Методы поиска короткого замыкания

Заранее найти место возникновения этого явления довольно сложно. В большинстве случаев до него нет дела ни специалистам, ни обычным пользователям. Однако это поможет вовремя нейтрализовать его, что приведет к невозможности появления пагубных последствий. Благодаря своевременному реагированию, экономятся финансовые средства и время. Методов как определить короткое замыкание существует несколько:

06 korotkoe zamykani 5

Провода, являющиеся составной частью токоведущего кабеля, могут соприкасаться между собой. Если они оголены, то именно это и является явной причиной КЗ. Подобные повреждения, как правило, находятся в распределительных коробках и других узлах электроснабжения (розетки, выключателях и так далее). Подгорелая изоляция кабеля — явное место, где потенциально может образоваться КЗ.

Применение специальных приборов помогает измерить значение сопротивления цепи. В их составе имеется 2 провода: один из них подключается к фазе, а другой — к нолю (далее к заземлению). Если на дисплее прибора отображается 0, значит целостность проводки в норме, если какое-либо другое значение — контакты соприкасаются. Обратите внимание, что напряжение мультиметра довольно маленькое. Им можно измерять цепи, протяженностью не более 3 метров.

Поиск места возникновения короткого замыкания по звуку — народный метод определения этого явления. Для этого необходимо тщательно прислушиваться у всех соединений. В месте контакта будет слышно характерное потрескивание. Иногда возникает запах горелой пластмассы и изоляции. Пользоваться таким способом нахождения КЗ следует пользоваться только в крайнем случае при недоступности других методов.

Очень часто бывает, что виновником является подключенный электроприбор. Его включение сразу приведет к срабатыванию предохранителя. Это приведет к моментальному отключению электроснабжения участка. Найти такой прибор можно методом исключения, поочередно включая все устройства.

Специалисты настоятельно рекомендуют не применять устаревшие способы поиска КЗ. В большинстве случаев они не показывают должной точности и эффективности. Если возникла необходимость найти место КЗ, необходимо пригласить профессионалов, которые будут использовать качественное и точное оборудование.

Защита от КЗ

Для защиты от КЗ существуют различные устройства:

В представленной схеме участвуют стабилитрон и диоды, защищающие светодиоды от воздействия обратных токов. За ограничение тока в системе защиты отвечают 2 резистора. Предохранитель должен быть самовосстанавливающегося типа, номиналы элементов должны подбираться индивидуально в зависимости от условий.

Эффективный способ защиты от представленного явления — применение реактора, ограничивающего ток. Он применяется в системе защиты электрических цепей, где величина КЗ может быть такой силы, с которой обычное оборудование не справится.

Ректор имеет вид катушки с сопротивлением индуктивного типа, подключенной к сети по последовательной схеме. Приемлемое функционирование цепи позволяет соблюдать уровень падения напряжения реактора около 4%. При образовании КЗ основная часть напряжения поступает на это устройство. Такое оборудование бывает масляного и бетонного типов. Каждый из них применяется в зависимости от типа электропроводки и питаемого ею оборудования.

Полезное КЗ

Ток, возникающий по причине подобного явления, может принести не только разрушение, но и пользу. Существует ряд оборудования, функционирующего в условиях повышенного значения тока. Классическим примером таких устройств является электродуговая сварка. Ее работа обусловлена соединением сварочного электрода и контура заземления.

08 korotkoe zamykani 7

При существенных перегрузках функционирование таких аппаратов кратковременно. Его обеспечивает сварочный трансформатор большой мощности. В месте, где происходит соприкосновение 2 электродов происходит выработка тока довольно значительной силы. Это приводит к выделению большого количества тепловой энергии, которой достаточно для плавления металла в области соприкосновения. Таким процессом обеспечена работа сварки. Шов получается аккуратным, долговечным и прочным.

Видео по теме

Источник

Расчёт трёхфазного короткого замыкания

а) Изменение тока при коротком замыкании

Рассчитать трёхфазное короткое замыкание — это значит определить токи и напряжения, имеющие место при этом виде повреждения как в точке к. з., так и в отдельных ветвях схемы.

Ток в процессе короткого замыкания не остаётся постоянным, а изменяется, как показано на рис. 1-23. Из этого рисунка видно, что ток, увеличившийся в первый момент времени, затухает до некоторой величины, а затем под действием автоматического регулятора возбуждения (АРВ) достигает установившегося значения.

256 RZA Korotkoe zamykanie 1

Промежуток времени, в течение которого происходит изменение величины тока к. з., называется переходным процессом. После того как изменение величины тока прекращается и до момента отключения короткого замыкания продолжается установившийся режим к. з. В зависимости от того, производится ли выбор уставок релейной защиты или проверка электрооборудования на термическую и динамическую устойчивость, могут интересовать значения тока в разные моменты времени к. з.

Читайте также:  Что такое гбц на ваз приора

Поскольку всякая сеть имеет определённые индуктивные сопротивления, препятствующие мгновенному изменению тока при возникновении короткого замыкания, величина его не изменяется скачком, а нарастает по определённому закону от нормального до аварийного значения.

Для упрощения расчёта и анализа ток, проходящий во время переходного процесса к. з., рассматривают как состоящий из двух составляющих: апериодической и периодической.

Апериодической называется постоянная по знаку составляющая тока ia, которая возникает в момент короткого замыкания и сравнительно быстро затухает до нуля (рис. 1-23).

Периодическая составляющая тока к. з. в начальный момент времени Inmo называется начальным током короткого замыкания. Величину начального тока к. з. используют, как правило, для выбора уставок и проверки чувствительности релейной защиты. Начальный ток короткого замыкания называют также сверхпереходным, так как для его подсчёта в схему замещения вводится так называемое сверхпереходное сопротивление генератора 256 RZA Korotkoe zamykanie 2и сверхпереходная э. д. с. 256 RZA Korotkoe zamykanie 3

Установившийся ток к. з. представляет собой периодический ток после окончания переходного процесса, обусловленного как затуханием апериодической составляющей, так и действием АРВ. Полный ток к. з. представляет собой сумму периодической и апериодической составляющих в любой момент переходного процесса. Максимальное мгновенное значение полного тока называется ударным током к. з. и вычисляется при проверке электротехнического оборудования на динамическую устойчивость.

Как уже отмечалось выше, для выбора уставок и проверки чувствительности релейной защиты используется обычно начальный или сверхпереходный ток к. з., расчёт величины которого производится наиболее просто. Используя начальный ток при анализе быстродействующих защит и защит, имеющих небольшие выдержки времени, пренебрегают апериодической составляющей. Допустимость этого очевидна, так как апериодическая составляющая в сетях высокого напряжения затухает очень быстро, за время 0,05—0,2 с, что обычно меньше времени действия рассматриваемых защит.

При к. з. в сети, питающейся от мощной энергосистемы, генераторы которой оснащены АРВ, поддерживающими постоянным напряжение на её шинах, периодическая составляющая тока в процессе к. з. не меняется (рис. 1-23, б). Поэтому расчётное значение начального тока к. з. в этом случае можно использовать для анализа поведения релейной защиты, действующей с любой выдержкой времени.

В сетях же, питающихся от генератора или системы определённой ограниченной мощности, напряжение на шинах которой в процессе к. з. не остаётся постоянным, а изменяется в значительных пределах, начальный и установившийся ток к. з. не равны (рис. 1-23, а). При этом для расчёта защит, имеющих выдержку времени порядка 1—2 с и более, следовало бы использовать установившийся ток к. з. Однако поскольку расчёт установившегося тока к. з. сравнительно сложен, допустимо в большинстве случаев использовать начальный ток к. з. Такое допущение, как правило, не приводит к большой погрешности. Объясняется это следующим. На величину установившегося тока к. з. значительно большее влияние, чем на величину начального тока, оказывают увеличение переходного сопротивления в месте повреждения, токи нагрузки и другие факторы, не учитываемые обычно при расчёте токов к. з. Поэтому расчёт установившегося тока к. з. может иметь весьма большую погрешность.

Принимая во внимание всё сказанное выше, можно считать целесообразным и в большинстве случаев вполне допустимым использование для анализа релейных защит, действующих с любой выдержкой времени, начального тока к. з. При этом возможное снижение тока в течение короткого замыкания следует учитывать для защит, имеющих выдержку времени, введением в расчёт повышенных коэффициентов надёжности по сравнению с быстродействующими защитами.

б) Определение начального тока к. з. в простой схеме

Поскольку при трёхфазном к. з. (рис. 1-24) э. д. с. и сопротивления во всех фазах равны, все три фазы находятся в одинаковых условиях. Векторная диаграмма для такого короткого замыкания, которое, как известно, называется симметричным, приведена на рис. 1-18, б. Расчёт симметричной цепи может быть существенно упрощён. Действительно, так как все три фазы находятся в одинаковых условиях, достаточно произвести расчёт для одной фазы и результаты его затем распространить на две другие. Расчётная схема при этом будет иметь вид, показанный на рис. 1-24, б. Совершенно очевидно, что даже в рассматриваемом простейшем случае последняя схема значительно проще, чем показанная на рис. 1-24, а.

256 RZA Korotkoe zamykanie 4

В сложных же электрических цепях, имеющих много параллельных и последовательных ветвей, разница будет ещё более очевидной.

Итак, в симметричной системе расчёт токов и напряжений можно производить только для одной фазы. Расчёт начинается с составления схемы замещения, в которой отдельные элементы расчётной схемы заменяются соответствующими сопротивлениями, а для источников питания указывается их э. д. с. или напряжение на зажимах. Каждый элемент вводится в схему замещения своими активным и реактивным сопротивлениями. Сопротивления генераторов, трансформаторов, реакторов определяются на основании паспортных данных и вводятся в расчёт, как указано ниже.

Реактивные сопротивления линий электропередачи рассчитываются по специальным формулам или могут приниматься приближенно по следующему выражению:

256 RZA Korotkoe zamykanie 5

где l — длина участка линии, км; худ — удельное реактивное сопротивление линии, Ом/км, которое можно принимать равным:

256 RZA Korotkoe zamykanie 6

Активные сопротивления медных и алюминиевых проводов могут быть подсчитаны по известному выражению

256 RZA Korotkoe zamykanie 7

256 RZA Korotkoe zamykanie 8Допускается при расчётах токов к. з. не учитывать активного сопротивления и вводить в схему замещения только реактивные сопротивления элементов, если суммарное реактивное сопротивление больше чем в 3 раза превышает суммарное активное сопротивление

256 RZA Korotkoe zamykanie 9

В дальнейшем для упрощения рассуждений будем считать, что условие (1-23), которое, как правило, выполняется для сетей напряжением 110 кВ и выше, действительно, и в расчёты будем вводить только реактивные сопротивления расчётной схемы.

Определение тока к. з. при питании от системы неограниченной мощности. Ток к. з. в расчётной схеме (рис. 1-25) определится согласно следующему выражению, кА:

256 RZA Korotkoe zamykanie 10

где xрез — результирующее сопротивление до точки к. з., равное в рассматриваемом случае сумме сопротивлений трансформатора и линии, Ом;

256 RZA Korotkoe zamykanie 11

Uс — междуфазное напряжение на шинах системы неограниченной мощности, кВ.

Под определением система неограниченной мощнoсти подразумевается мощный источник питания, напряжение на шинах которого остаётся постоянным независимо от места к. з. во внешней сети. Сопротивление системы неограниченной мощности принимается равным нулю. Хотя в действительности системы неограниченной мощности быть не может, это понятие широко используют при расчетах коротких замыканий. Можно считать, что рассматриваемая система имеет неограниченную мощность в тех случаях, когда её внутреннее сопротивление много меньше сопротивления внешних элементов, включенных между шинами системы и точкой к. з.

Читайте также:  Сколько стоит гидротрансформатор акпп на ауди а6

256 RZA formula 002Пример 1-1. Определить ток. проходящий при трёхфазном к. з. за реактором сопротивлением 0,4 Ом, который подключен к шинам генераторного напряжения 10,5 кВ мощной электростанции.

Решение. Поскольку сопротивление реактора значительно больше, чем сопротивление системы, можно считать, что он подключен к шинам неограниченной мощности.

256 RZA formula 001

Определение тока к. з. при питании от системы ограниченной мощности. Если сопротивление системы, питающей точку короткого замыкания, сравнительно велико, его необходимо учитывать при определении тока к. з. В этом случае в схему замещения вводится дополнительное сопротивление хспст и принимается, что за этим сопротивлением находятся шины неограниченной мощности.

Величина тока к. з. определяется по следующему выражению (рис. 1-26):

256 RZA Korotkoe zamykanie 14

Сопротивление системы можно определить, если задан ток трёхфазного к. з. на её шинах Iк.з.зад.:

256 RZA Korotkoe zamykanie 15

Пример 1-2. Определить ток трёхфазного к. з. за сопротивлением 15 Ом линии 110 кВ, питающейся от шин подстанции. Ток трёхфазного к. з. на шинах подстанции, приведенный к напряжению 115 кВ, равен 8 кА.

Решение. Согласно (1-26) определяется хсист:

256 RZA Korotkoe zamykanie 16

Определяется ток в месте к. з. в соответствии с (1-25):

256 RZA Korotkoe zamykanie 17

Сопротивление системы при расчётах к. з. может быть задано не током, а мощностью короткого замыкания на шинах подстанции. Мощность короткого замыкания — условная величина, равная

256 RZA Korotkoe zamykanie 18

где Iк.з. — ток короткого замыкания; Ucp — среднее расчётное напряжение на той ступени трансформации, где вычисляется ток короткого замыкания.

Пример 1-3. Определить ток трёхфазного к. з. за реактором сопротивлением 0,5 Ом. Реактор питается от шин 6,3 кВ подстанции, мощность к. з. на которых равна 300 MB • А.

Решение. Определим сопротивление системы:

256 RZA Korotkoe zamykanie 19

в) Определение остаточного напряжения

В схеме, приведенной на рис. 1-26, величина остаточного напряжения на шинах определяется согласно следующим выражениям:

256 RZA Korotkoe zamykanie 20

где x к.з. — сопротивление от шин подстанции, на которых определяется остаточное напряжение, до места к. з., или

256 RZA Korotkoe zamykanie 21

х — сопротивление от шин источника питания до точки, в которой определяется остаточное напряжение.

Поскольку сопротивление рассматриваемой цепи принято чисто реактивным, в выражения (1-27) и (1-28) входят абсолютные величины, а не векторы.

Пример 1-4. Определить остаточное междуфазное напряжение на шинах подстанции в примере 1-2.

Решение. По первому выражению (1-27):

256 RZA Korotkoe zamykanie 22

г) Расчёты токов короткого замыкания и напряжений в разветвлённой сети

В сложной разветвлённой сети, для того чтобы определить ток в месте к. з., необходимо предварительно преобразовать схему замещения так, чтобы она имела простой вид, по возможности с одним источником питания и одной ветвью сопротивления. С этой целью производится сложение последовательно и параллельно включенных ветвей, треугольник сопротивлений преобразуется в звезду и наоборот.

Пример 1-5. Преобразовать схему замещения, приведенную на рис. 1-27, определить результирующее сопротивление и ток в месте к. з. Значения сопротивлений указаны на рис. 1-27.

Решение. Преобразование схемы замещения производим в следующей последовательности.

256 RZA Korotkoe zamykanie 23

Для распределения тока к. з. по ветвям схемы можно воспользоваться формулами, приведенными в табл. 1-1. Распределение токов производится последовательно в обратном порядке начиная с последнего этапа преобразования схемы замещения.

Пример 1-6. Распределить ток к. з. по ветвям схемы, приведенной на рис. 1-27.

Решение. Определим токи в параллельных ветвях 4 и 7 в соответствии с формулами (табл. 1-1):

256 RZA Korotkoe zamykanie 24

256 RZA Korotkoe zamykanie 26

Ток I7 проходит по сопротивлению х5 и затем разветвляется по параллельным ветвям х2 и х3:

256 RZA Korotkoe zamykanie 27

Остаточное напряжение в любой точке разветвлённой схемы может быть определёно путём последовательного суммирования и вычитания падений напряжения в её ветвях.

Пример 1-7. Определить остаточное напряжение в точках а и б схемы, приведенной на рис. 1-27. Решение.

256 RZA Korotkoe zamykanie 28

256 RZA Korotkoe zamykanie 29Если в схему замещения входят две или несколько э. д. с, точки их приложения объединяются и они заменяются одной эквивалентной э. д. с. (рис. 1-28).

Если э. д. с. источников равны по величине, то эквивалентная э. д. с. будет иметь такую же величину

256 RZA Korotkoe zamykanie 30

Если же э. д. с. не равны, эквивалентная э. д. с. подсчитывается по следующей формуле:

256 RZA Korotkoe zamykanie 31

д) Расчёт токов короткого замыкания по паспортным данным реакторов и трансформаторов

Во всех примерах, рассмотренных выше, сопротивления отдельных элементов схемы задавались в омах. Сопротивления же реакторов и трансформаторов в паспортах и каталогах не задаются в омах.

Параметры реактора обычно задаются в процентах как относительная величина падения напряжения в нём при прохождении номинального тока хP, %.

Сопротивление реактора (Ом) можно определить по следующему выражению:

256 RZA Korotkoe zamykanie 32

гле UHOM и IHOM — номинальное напряжение и ток реактора.

Сопротивление трансформатора также задаётся в процентах как относительная величина падения напряжения в его обмотках при прохождении тока, равного номинальному, uK, %.

Для двухобмоточного трансформатора можно записать сопротивление (Ом):

256 RZA Korotkoe zamykanie 33

где uK, %, и UHOM, кВ, — указаны выше, а S HOM — номинальная мощность трансформатора, MB• А.

При коротком замыкании за реактором или трансформатором подключенными, к шинам системы неограниченной мощности, ток и мощность к. з. определяются по следующим выражениям:

256 RZA Korotkoe zamykanie 34

где IHOM — номинальный ток соответствующего реактора или трансформатора.

Пример 1-8. Вычислить максимально возможный ток трёхфазного к. з. за реактором РБA-6-600-4. Реактор имеет следующие параметры: UH = 6 кВ, IH = 600 А, хP = 4%.

Решение. Поскольку требуется определить максимально возможный ток к. з., считаем, что реактор подключен к шинам системы неограниченной мощности.

В соответствии с (1-33) ток к. з. за реактором определится как

256 RZA Korotkoe zamykanie 35

Пример 1-9. Определить максимально возможный ток и мощность трёхфазного к. з. за понизительным трансформатором: SH = 31,5MB • А, UН1= 115 кВ, UН2 = 6,3 кВ, uK = 10,5%

Решение. Принимая, как и в предыдущем примере, что трансформатор подключен со стороны 115 кВ к шинам системы неограниченной мощности, определяем ток к. з.

Номинальный ток обмотки 6,3 кВ трансформатора равен:

Источник

Оцените статью
Adblock
detector