Шина для передачи данных между устройствами

Содержание
  1. Шина данных это
  2. Шина данных это система передачи информации в ПК
  3. Компьютерная шина
  4. Основное деление компьютерных шин
  5. Одна из самых значимых устройств связи
  6. Производительность компьютера
  7. Системные шины в современных компьютерах
  8. Глава 1. Компьютер. Программное и аппаратное обеспечение
  9. Магистраль: шина данных шина адреса и шина управления. Шины периферийных устройств
  10. Магистраль
  11. Шина данных
  12. Шина адреса
  13. Шина управления
  14. Основные шины компьютера
  15. Что такое шина компьютера
  16. Виды системных шин
  17. Шина ISA
  18. Шина MCA
  19. Шина EISA
  20. Шина VESA
  21. Шина PCI
  22. Шина AGP
  23. PCI-Express
  24. PC Card
  25. Шина SCSI
  26. Шина USB
  27. Выводы
  28. Шина данных
  29. 1 Устройства всоставе персонального компьютера IBM-PC
  30. Шина — данные
  31. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.
  32. Внутренняя шина — данные
  33. Интерфейсы компьютера.
  34. 2 Системныеблоки корпуса персональных компьютеров
  35. 1. Обзор шин пк.
  36. Шина данных это система передачи информации в ПК
  37. Компьютерная шина
  38. Основное деление компьютерных шин
  39. Одна из самых значимых устройств связи
  40. Производительность компьютера
  41. Системные шины в современных компьютерах
  42. Внешняя шина — данные
  43. Адресное пространствомикропроцессорного устройства.

Шина данных это

lazy placeholder

Шина данных это система передачи информации в ПК

Шина данных это одна из самых важных шин, из-за необходимости которой собственно и формируется вся остальная система. Численность имеющихся у нее разрядов указывает на скорость и производительность обмена данными, кроме этого определяет наибольшее число выполняемых команд. Шина данных это устройство, которое передает данные всегда в двух направлениях.

Для работы компьютера предполагается наличие в его составе комплекса определенных систем, и отсутствие хотя бы одной из них приведет к полной неработоспособности ПК. Ниже перечислены основные системы:

Но все-таки эти модули, даже в комплексе не будут выполнять тех функций, которые от них требуются. Для того, чтобы все компоненты функционировали как положено, среди них создается взаимосвязь, с помощью которой будет выполняться необходимые вычислительные и другие операции. Средства связи такого рода создают именно компьютерные системные шины. Следовательно, можно утверждать, что данный компонент является крайне необходимым элементом в компьютерном блоке.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Основное деление компьютерных шин

lazy placeholder

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Одна из самых значимых устройств связи

Все действия выполняемые нами с помощью компьютера, будь то работа с документами или прослушивание музыкальных треков, компьютерные игры — все это возможно только благодаря процессору. Равным образом и процессор не может выполнять свои функции, не имея при этом магистральной связи с остальными значимыми компонентами осуществляющими полноценную работу компьютера. То есть, именно с помощью системной шины процессора организуется в одно целое комплекс устройств.

Производительность компьютера

Все основные компьютерные шины в зависимости от предназначения, делятся на несколько категорий:

lazy placeholder

У процессора может быть задействовано несколько системных трактов связи, при этом, как показала практика, наличие определенного количества шин увеличивает эффективность работы компьютера. Пропускная способность компьютерной шины в большей части определяет производительность ПК. Принцип ее действия заключается в определение скорости трансляции данных, передающихся с локальных устройств на другие вычислительные модули и обратно.

Системные шины в современных компьютерах

Стандартная локальная шина, разработанная ассоциацией VESA, получила компетентное признание в мире компьютерных технологий. Официальное ее название VL-Bus и она же является одной из самых популярных шин локального назначения со дня ее представления. Используя шину VL-Bus можно осуществлять 32-разрядную передачу информации между графическим адаптером и процессором либо винчестером.

lazy placeholder

Однако, такая магистраль связи не способна поддерживать корректную работу микропроцессора. Вследствие этого она встраивается в систему вместе с 16-разрядной шиной ISA, и таким образом выполняет функции дополнительного расширения.

Компьютерная шина, оперативка, центральный процессор и мосты

Источник

Глава 1. Компьютер. Программное и аппаратное обеспечение

Магистраль: шина данных шина адреса и шина управления. Шины периферийных устройств

Вспомним, на прошлом уроке рассматривалось устройство материнской платы. Рассмотрим более подробно, какие же логические устройства можно установить на системную плату, т.к. системная плата наравне с процессором является основным устройством любого современного компьютера. Так же необходимость более подробного знакомства с системной платой обусловлено тем, что на системных платах реализуются шины различных типов. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате, как было сказано на прошлом уроке, устанавливаются специальные микросхемы (чипсеты), вклю­чающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост). (см. рис. 1)

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины — 100 МГц).

Южный мост обеспечивает обмен информацией между се­верным мостом и портами для подключения периферийного оборудования.

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают элек­трические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются после­довательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB ( Universal Serial Bus — универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Рассмотрим структуру магистрали (системной шины), т.к. модульная организация системы опирается на магистральный (шинный) принцип обмена информации.

Магистраль

Системная магистраль осуществляет обмен данными между процессором или ОЗУ с одной стороны и контроллерами внешних устройств компьютера с другой стороны.

01 05 99

Рис 2. Магистрально-модульный принцип

Шина данных

По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

За 25 лет, со времени создания первого персонального компьютера (1975г.), разрядность шины данных увеличилась с 8 до 64 бит.

К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.

Шина адреса

Шина адреса предназначена для передачи по ней адреса того устройства (или той ячейки памяти), к которому обращается процессор. Адрес на нее выдает всегда только процессор. По шине данных передается вся информация. При операции записи информацию на нее выставляет процессор, а считывает то устройство (например, память или принтер), адрес которого выставлен на шине адреса. При операции чтения информацию выставляет устройство, адрес которого выставлен на шине адреса, а считывает процессор.

Таким образом, каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N == 2 32 = 4 294 967 296 = 4 Гб

Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.

Шина управления

По шине управления передаются сиг­налы такие, например, как сигналы чтения, записи, готовности, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами. Кроме того, каждое внешнее устройство, которому нужно обратиться к процессору, имеет на этой шине собственную линию. Когда периферийное устройство «хочет обратиться» к процессору, оно устанавливает на этой линии специальный сигнал (сигнал прерывания), заметив который, процессор прерывает выполняемые в этот момент действия и обращается (командой чтения или записи) к устройству.

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти (см. таблицу). Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последний, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее.

Читайте также:  Шаровый наконечник на ваз замена

01 05 100

Особо отметим, что обмен по шине при определенных условиях и при наличии определенного вспомогательного оборудования может происходить и без непосредственного участия процессора, например, между устройством ввода и внутренней памятью.

Подчеркнем также, что описанная нами функциональная схема на практике может быть значительно сложнее. Современный компьютер может содержать несколько согласованно работающих процессоров, прямые информационные каналы между отдельными устройствами, несколько взаимодействующих магистралей и т.д. Тем не менее, если понимать наиболее общую схему, то разобраться в конкретной компьютерной системе будет уже легче.

Магистральная структура позволяет легко подсоединять к компьютеру именно те внешние устройства, которые нужны для данного пользователя. Благодаря ей удается скомпоновать из стандартных блоков любую индивидуальную конфигурацию компьютера.

Необходимость использования контроллеров вызвана тем, что функциональные и технические параметры компонентов компьютера могут существенно различаться, например, их быстродействие. Так, процессор может проводить сотни миллионов операций в секунду, тогда как пользователь может вводить с клавиатуры, в лучшем случае 2-3 знака в секунду. Контроллер клавиатуры как раз и обеспечивает согласование скорости ввода информации со скоростью ее обработки.

Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др.

Источник

Основные шины компьютера

Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.

Что такое шина компьютера

По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.

Виды системных шин

Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:

Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.

Вот наиболее распространенные типы шин в компьютере для расширений:

А теперь давайте более подробно разберем все эти шины персональных компьютеров.

Шина ISA

4734157 f520

Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.

Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.

Шина MCA

rId7

Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году. Шина получила еще больше усовершенствований по сравнению с ISA. Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.

Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.

Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки. Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.

Шина EISA

13171568 f520

Эта шина была разработана группой производителей в качестве альтернативы для MCA. Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти. Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.

Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.

Шина VESA

rId8

Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.

Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор. Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже. Из-за этой проблемы шина VESA со временем была заменена на PCI.

Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.

Шина PCI

13171600 f520

В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.

Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.

Шина AGP

ecs2

Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.

PCI-Express

Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.

Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.

PC Card

350173435

Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.

Шина SCSI

13171590 f520

Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году. Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры. Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.

Шина USB

USBKill Shuts Down Computer When USB Port Activity Changes 480235 2

Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек. Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования. На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.

USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.

USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек. Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с. Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.

Выводы

В этой статье мы рассмотрели основные шины компьютера, историю их развития, назначение шин компьютера, их типы и виды. Надеюсь эта статья была для вас полезной и вы узнали много нового.

На завершение небольшое видео про шины и интерфейсы компьютера:

Источник

Шина данных

1 Устройства всоставе персонального компьютера IBM-PC

ac40f1b8da25a91030106d2e111e0ff7

Системный
блок, монитор, клавиатура и периферийные
устройства

Внешний
вид персонального компьютера может иметь
самые разнообразные формы. Как правило, мы
можем выделить несколько крупных объектов,
оформленных в виде отдельных компонент
соединенных кабелями или шлейфами,
представляющих персональный компьютер
непосредственно и периферийные
компоненты
. В зависимости от
реализации исполнения и дизайна корпуса
системного блока
, монитора
и клавиатуры они могут быть
объединены в один или более общих корпусов
и выполняться как совершенно
самостоятельные отдельные элементы.

Шина — данные

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы.

Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов ( линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Структурная схема МК подгруппы PIC16F8X.

Шина данных и память данных ( ОЗУ) — имеют ширину 8 бит, а программная шина и программная память ( ПЗУ) имеют ширину 14 бит. Такая концепция обеспечивает простую, но мощную систему команд, разработанную так, что битовые, байтовые и регистровые операции работают с высокой скоростью и с перекрытием по времени выборок команд и циклов выполнения. Двухступенчатый конвейер обеспечивает одновременную выборку и исполнение команды. Все команды выполняются за один цикл, исключая команды переходов.

Шина данных — эти сигналы обеспечивают двунаправленную шину данных для доступа к внешней памяти программ.

Читайте также:  Стартер не крутит только щелкает что делать
Структура шины микрокомпьютерной системы.

Шина данных предназначена для перемещения данных внутри компьютера, например между запоминающим устройством и процессором.

Шина данных работает в режиме двунаправленной передачи. Это означает, что по ней можно передавать слова в обоих направлениях, но, разумеется, не одновременно: требуется применение специальных буферных схем и мультиплексного режима1 обмена данными между микропроцессором и внешней памятью.

Шина данных — двунаправленная шина, по которой данные могут на правляться либо в микропроцессор, либо нз него ( на рнс. По такой шине данные невозможно одновременно передавать в обоих направлениях. Эти процедуры разнесены во времени в результате применения временного мультиплексирования.

Шина данных является двунаправленной, как частично и шина управления. От МП по ША передаются адреса соответствующих внешних устройств ( ВУ) и памяти. Объем адресуемой памяти колеблется от 64К до Ш слов с разрядностью от 8 до 32 бит.

Шина данных — двунаправленная, ибо каждый функциональный узел ( кроме ПЗУ) должен как принимать, так и передавать информацию.

Шина данных ( Д) включает в себя 16 двунаправленных линий для обмена 16-разрядными словами или байтами.

Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ
в ЭВМ состоят из последовательности
ячеек, каждая из которых содержит
значение 1-ого байта и имеет собственный
номер (адрес), по которому происходит
обращение к ее содержимому. Все данные
в ЭВМ хранятся в двоичном виде (0,1).

ЗУ
характеризуется 2-мя параметрами:

-объем
памяти — размер в байтах, доступных для
хранения информации

-Время
Доступа к ячейкам памяти — средний
временной интервал в течении кот.
находится требуемая ячейка памяти и из
нее извлекаются данные.

Оперативное
запоминающее устройство (ОЗУ; RAM
– Random
Access
Memory)
предназначено для оперативной записи,
хранения и чтения информации (программ
и данных), непосредственно участвующей
в информационно-вычислительном процессе,
выполняемом ЭВМ в текущий период времени.
После выключения питания ЭВМ, информация
в ОЗУ уничтожается. (В ЭВМ на базе
процессоров Intel Pentium
используется 32-разрядная адресация.
Т.е число адресов 232,
то есть возможное адресное пространство
составляет 4,3 Гбайт. время доступа
0,005-0,02 мкс. 1 с = 106 мкс.

Постоянное
запоминающее устройство (ПЗУ; ROM
– Read
Only
Memory)
хранит неизменяемую (постоянную)
информацию: программы, выполняемые во
время загрузки системы, и постоянные
параметры ЭВМ. В момент включения ЭВМ
в его ОЗУ отсутствуют данные, так как
ОЗУ не сохраняет данные после выключения
ЭВМ. Но МП необходимы команды, в том
числе и сразу после включения. Поэтому
МП обращается по специальному стартовому
адресу, который ему всегда известен, за
своей первой командой. Этот адрес из
ПЗУ. Основное назначение программ из
ПЗУ состоит в том, чтобы проверить состав
и работоспособность системы и обеспечить
взаимодействие с клавиатурой, монитором,
жесткими и гибкими дисками. Обычно
изменить информацию ПЗУ нельзя. Объем
ПЗУ 128-256 Кбайт, время доступа
0,035-0,1 мкс. Так как объем ПЗУ небольшой,
но время доступа больше, чем у ОЗУ, при
запуске все содержимое ПЗУ считывается
в специально выделенную область ОЗУ.

Энергонезависимая
память CMOS
RAM
(Complementary
Metal-Oxide
Semiconductor
RAM),
в которой хранятся данные об аппаратной
конфигурации ЭВМ: о подключенных к ЭВМ
устройствах и их параметры, параметры
загрузки, пароль на вход в систему,
текущее время и дата. Питание памяти
CMOS
RAM
осуществляется от батарейки. Если заряд
батарейки заканчивается, то настройки,
хранящиеся в памяти CMOS
RAM,
сбрасываются, и ЭВМ использует настройки
по умолчанию.

ПЗУ
и память CMOS
RAM
составляют базовую систему ввода-вывода
(BIOS
– Basic
Input-Output
System).

Внешние
ЗУ. ВЗУ для долговременного хранения и
транспортировки информации. ВЗУ
взаимодействуют с сист. шиной через
контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают
интерфейс ВЗУ и сист. шины в режиме
прямого доступа к памяти, т.е. без участия
МП. ИНТЕРФЕЙС — это совокупность связей
с унифицированными сигналами и аппаратуры,
предназначенной для обмена данными
между устройствами вычислительной
системы.

ВЗУ
можно разделить по критерию транспортировки
на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные
ВЗУ состоят из носителя, подключ-ого к
порту вв/вывода (обычно ЮСБ), (флеш-память)
или носителя и привода (накопители на
ГМД, приводы СиДи и ДВД). В стационарных
ВЗУ носитель и привод объединены в
единое устройство (НЖМД). Стационарные
ВЗУ предназначены для хранения информации
внутри ЭВМ.

Перед
первым использованием или в случае
сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь
— записать на носитель служебную
информацию.

Основные
Технические Характеристики ВЗУ

-Информационная
емкость определяет наибольшее кол-во
ед. данных, кот может одновременно
хранить в ВЗУ (зависит от площади объема
носителя и плотности записи.)

-Плотность
записи — число бит информации, записанных
на единице поверхности носителя.
Различают продольную плотность (бит/мм),
и поперечную плотность.//

-Время
доступа — интервал времени от момента
запроса (чтения или записи) до момента
выдачи блока (включая время поиска
инфции на носителе и время чтения или
записи.)

-Скорость
передачи данных определяет кол-во
данных, считываемых или записываемых
в единицу времени и зависит от скорости
движения носителя, плотности записи,
числа каналов и тп.

Внутренняя шина — данные

Внутренняя шина данных соединяет между собой основные части МП. Шиной называют группу линий передачи информации, объединенных общим функциональным признаком. В микропроцессорной системе используются три вида шин: данных, адресов и управления.

Структурная схема 8-разрядного микропроцессора ( операция завершена, в аккумуляторе новые данные, процессор ожидает следующую команду.

Внутренняя шина данных представляет собой линию двусторонней связи.

Микропроцессор U 8081 с указанием размеров ( в мм.

По внутренней шине данных и адресов передаются управляющая информация, 14-разрядные адреса и данные в режиме работы с разделением времени. Передача осуществляется между отдельными функциональными блоками ЦП, a также между ЦП и внешними ЗУ. Начало работы и ее окончание определяются для каждого функционального блока при помощи управляющих сигналов.

Структурная схема 8-разрядного микропроцессора.| Формирование с разными фазами.
Структурная схема 8-разрядного микропроцессора ( аккумулятор и регистр D загружены данными, и регистре команд находится команда ADD. в это время регистр D и аккумулятор не соединены ни с каким другими узлами.

Интерфейсы компьютера.

Интерфейс – совокупность средств сопряжения и связи, обеспечивающая эффективное взаимодействие систем или частей.

В интерфейсе обычно предусмотрено сопряжение на двух уровнях:

— механическом (провода, элементы связи, типы соединений, разъемы, номера контактов ит.д.)

— логическом (сигналы, их длительность, полярности, частоты и амплитуда, протоколы взаимодействия).

Все интерфейсы ЭВМ можно разделить на внутренние и внешние:

— внутренние – система связи и сопряжения узлов и блоков ПК между собой;

— внешние – обеспечивают связь ПК с внешними (периферийными) устройствами и другими компьютерами.

2 Системныеблоки корпуса персональных компьютеров

Системные
блоки IBM РС выполняются в различных
геометрических вариантах. Так по форме,
расположению внутренних узлов, рабочему
положению и размерам, обычно, выделяют
корпуса с вертикальным и горизонтальным
пространственным расположением элементов.

e9a842cd4bcae0cdbb6e065019c92ab1

Корпуса с
горизонтальным расположением делят на типы:
нормальный (normal), малый (baby)
и сверх малый (slim)

Корпуса
с вертикальным расположением называют
типом башня (tower) и делят на виды: 1 – малый (mini
tower), 2 – средний (midi tower) и 3 – большой (big tower).
Как правило, корпуса такого исполнения
отличаются друг от друга видом передней
панели и общей полезной высотой, в то время
как, их ширина, длинна и глубина различаются
незначительно. На передней панели
системного блока располагаются некоторые
элементы управления, а именно: тумблер-выключатель
напряжения питания сети (Power), кнопка сброса
– перезагрузки (Reset), кнопка включения/выключения
режима турбирования (Turbo), индикаторы этих
режимов, индикатор обращения к жесткому
диску, передние панели дисковых и ленточных
устройств — накопителей информации со
сменными носителями и другие комплектующие
элементы и части устройств, требующие
простого и частого доступа при
использовании.

55a0a8bdf61b7503487f06138ff3a5cbВнутри
системного блока размещаются основные
внутренние компоненты персонального
компьютера: материнская плата – 3, платы
адаптеров, интерфейсов, контроллеров
устройств, карт, расширений и их разъемы –
10, дисковые накопители – 8 и 13, блок питания
– 6, соединительные шлейфы, шнуры и кабели –
4, 7, вентилятор системы охлаждения
внутренних элементов – 1, вентилятор и
радиатор системы охлаждения центрального
процессора – 2, слоты системной шины – 9,
отверстие разъема клавиатуры – 11 и входной
и выходной разъемы подключения питания – 12
и т.д.. Так как многие компоненты могут быть
интегрированы на материнской плате, то не
все они могут быть представлены как
отдельные комплектующие элементы. Задняя
панель, как правило, содержит панели плат
расширений с разъемами, заглушки разъемов,
вентиляционное отверстие вентилятора
блока питания – 5 и др.

Корпус
может быть выполнен из металла, пластика и
комбинации того и другого. Как правило, все
комплектующие элементы, расположенные
внутри системного блока, крепятся изнутри к
металлической раме – 3, состоящей из днища
– 8, задней панели – 3 и передней панели – 7,
на которую затем надевается кожух – 2. В
передней панели имеется одно или несколько
окон – 1, предназначенных для вывода на
лицевую – переднюю часть управляющих
панелей устройств, требующих постоянного
доступа во время эксплуатации (магнитные,
оптические, магнитооптические дисководы,
ленточные накопители и др.). Задняя панель,
также, имеет отверстия и окна для вывода на
заднюю часть системы охлаждения блока
питания – 4, разъемов интерфейсов
периферийных устройств – 5, заглушек плат
интерфейсных карт – 6.

1. Обзор шин пк.

Все компоненты ПК объединены между
собой проводниками (кабелями) позволяющими
обмениваться данными, адресной
информацией, управлять режимами работы,
подключать питание и т.д.

Группы проводников, объединённые по
определённым признакам носят название
шин или магистралей.

В архитектуре ПК выделяют системные
шины (шины расширения — Expansion Bus) и
локальные шины. Основной обязанностью
системной шины является передача
информации между базовым МП и остальными
электронными компонентами компьютера.

Читайте также:  Тип источника питания по шине что это

Локальные шины вводятся для повышения
производительности ПК при работе с
устройствами, требующими передачи
больших объёмов информации (например,
накопителей, видеоадаптеров). Локальные
шины связывают между собой процессор
непосредственно с контроллерами
периферийных устройств.

Как следует из названия системные шины
(шины расширения) предназначены для
подключения различных адаптеров
периферийных устройств, расширяющих
возможности компьютера.

Интерфейсы шин начали свою историю с
8-битной шины ISA. Открытость этой шины
обеспечила появление широкого спектра
плат расширения, позволяющих использовать
PC в различных случаях, вплоть до применения
в качестве управляющего компьютера в
различных системах автоматизации.

С появлением АТ-286 шина ISA была
модифицирована, что позволило повысить
её производительность. Шина EISA явилась
откликом на потребность в
высокопроизводительном обмене для
серверов. Это довольно дорогая шина и
распространена не так широко. В шину
EISA можно установить и ISA – адаптеры.

Шина МСА, выдвинутая фирмой IBM как
прогрессивная альтернатива ISA, не была
поддержана производителями блоков PC,
так её спецификация не была открытой.
В результате она практически отмерла
вместе с семейством ПК IBM PS/2.

C появлением МП i486 появилась потребность
в повышении производительности
вычислительной системы, т.о. родилась
локальная шина VLB. Принципиальная
привязка к шине процессора 486 не обеспечила
ей долгого существования — пришла пора
Pentium.

Шина PCI является в настоящее время
стандартной для ПК и используется с
процессорами 4,5 и 6 поколений.

Развитием шины PCI, нацеленным на дальнейшее
повышение производительности обмена,
является порт AGP, специально предназначенный
для подключения мощных графических
адаптеров.

Местоположение шин в архитектуре
современных ПК иллюстрирует рис.26.1.

af601072c2aeeefd95f02a336a1529e3

Шина данных это система передачи информации в ПК

Шина данных это одна из самых важных шин, из-за необходимости которой собственно и формируется вся остальная система. Численность имеющихся у нее разрядов указывает на скорость и производительность обмена данными, кроме этого определяет наибольшее число выполняемых команд. Шина данных это устройство, которое передает данные всегда в двух направлениях.

Но все-таки эти модули, даже в комплексе не будут выполнять тех функций, которые от них требуются. Для того, чтобы все компоненты функционировали как положено, среди них создается взаимосвязь, с помощью которой будет выполняться необходимые вычислительные и другие операции. Средства связи такого рода создают именно компьютерные системные шины. Следовательно, можно утверждать, что данный компонент является крайне необходимым элементом в компьютерном блоке.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Основное деление компьютерных шин

3ac1a19d75f55284165a4393704c6256df3f2e5d9c4a87c0011f1207d8ac8806

Отличие шин друг от друга базируется на нескольких моментах. Главным признаком считается Первенствующим показателем является место расположения. Исходя из этого шины бывают следующих типов:

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Одна из самых значимых устройств связи

Все действия выполняемые нами с помощью компьютера, будь то работа с документами или прослушивание музыкальных треков, компьютерные игры — все это возможно только благодаря процессору. Равным образом и процессор не может выполнять свои функции, не имея при этом магистральной связи с остальными значимыми компонентами осуществляющими полноценную работу компьютера. То есть, именно с помощью системной шины процессора организуется в одно целое комплекс устройств.

Производительность компьютера

Все основные компьютерные шины в зависимости от предназначения, делятся на несколько категорий:

7291cbf02e109ab6f4d2c011ff2011287e61e4ee19366757016a07ed54ef18a3

У процессора может быть задействовано несколько системных трактов связи, при этом, как показала практика, наличие определенного количества шин увеличивает эффективность работы компьютера. Пропускная способность компьютерной шины в большей части определяет производительность ПК. Принцип ее действия заключается в определение скорости трансляции данных, передающихся с локальных устройств на другие вычислительные модули и обратно.

Системные шины в современных компьютерах

Стандартная локальная шина, разработанная ассоциацией VESA, получила компетентное признание в мире компьютерных технологий. Официальное ее название VL-Bus и она же является одной из самых популярных шин локального назначения со дня ее представления. Используя шину VL-Bus можно осуществлять 32-разрядную передачу информации между графическим адаптером и процессором либо винчестером.

1b339e51c0e0d790c54b8b221f24574c0fab382facc5f5233f439b80ed16d908

Однако, такая магистраль связи не способна поддерживать корректную работу микропроцессора. Вследствие этого она встраивается в систему вместе с 16-разрядной шиной ISA, и таким образом выполняет функции дополнительного расширения.

Компьютерная шина, оперативка, центральный процессор и мосты

Внешняя шина — данные

Внешняя шина данных выходит за пределы МП. Эти шины обеспечивают пропуск кодовой комбинации ( слова) на число разрядов, на которое рассчитан данный МП. У наиболее распространенных однокристальных МП ширина шины данных или магистрали составляет восемь разрядов. Связь внутри МП и с внешними устройствами осуществляется также с помощью шины адреса и шины управления.

Микросхемы представляют собой 16-битовый микропроцессор с 8-битовой внешней шиной данных ( центральное процессорное устройство с байтовым принципом организации) и предназначены для перевода аппаратных средств, построенных на К580ВМ80 и К580ВМ85, на программную среду К1810ВМ86 для повышения производительности. Различия состоят в изменении разрядности шины данных и соответствующих изменениях структуры и работы шинного интерфейса. БНЕзаме-нена линией состояния SSO, так как К1810ВМ88 может обращаться только к байтам и надобность в сигнале разрешения старшего байта шины SHE отпадает.

Как и процессор 8086, 80286 имеет 16-разрядную внешнюю шину данных и 6-байтный конвейер команд. Однако быстродействие процессора 80286 при тактовой частоте 12 5 МГц примерно в 6 раз выше, чем у 8086 с тактовой частотой 5 М Гц. Это достигается за счет усовершенствованной архитектуры и снижения количества тактов на одну команду.

Принцип двунаправленной, rj днных и алпеоа поелостав-передачи между внутренней и внеш — шин Данных и адреса., предосгав ней шинами данных ляя их в распоряжение внешних.

Буферы данных и буферы адреса обеспечивают связь центрального процессора с внешними шинами данных и адреса. Особенность буферов состоит в том, что в каждом разряде они используют логические элементы с тремя состо-яниями.

Обмен 8-разрядными командами и данными между микропроцессором и внешними устройствами производится по 8-разрядной внешней шине данных DO — D7 через буферный регистр данных, который может находиться в трех состояниях — О, 1 и с высоким выходным сопротивлением, т.е. когда он отключается от внешней шины данных.

Структурная схема однокристального МП.
Типовая структура цифровой системы обработки сигналов.

Снаружи процессор представляет собой 32-битовое устройство. Внешняя шина данных к памяти является 64-битовой, удваивая количество данных, передаваемых в течение одного шинного цикла.

Обмен кодами между памятью команд, памятью данных, периферийными устройствами и МП осуществляется через двунаправленный буфер шины данных. Последний изолирует внешнюю шину данных от внутренней. Это позволяет упростить подключение к одной шине нескольких устройств.

Адресное пространствомикропроцессорного устройства.

Адресное пространство микропроцессорного
устройства изображается графически
прямоугольником, одна из сторон которого
представляет разрядность адресуемой ячейки
этого микропроцессора, а другая сторона — весь
диапазон доступных адресов для этого же
микропроцессора. Обычно в качестве
минимально адресуемой ячейки памяти
выбирается восьмиразрядная ячейка памяти (байт).
Диапазон доступных адресов
микропроцессора определяется разрядностью шины
адреса системной шины. При этом минимальный
номер ячейки памяти (адрес) будет равен 0, а
максимальный определяется из формулы:

Для шестнадцатиразрядной шины это будет число
65535 (64K). Адресное пространство этой шины и
распределение памяти микропроцессорной
системы, изображЈнной на рисунке 1, приведено на рисунке
2, а
распределение памяти микропроцессорной
системы, изображЈнной на рисунке 1, приведено на рисунке
3.

63823f6b22394b11983ec4672211dac6

Рисунок 2. Адресное пространство шестнадцатиразрядной
шины адреса.

8055c537cbee8fce35caca3545e1487b

Рисунок 3. Распределение памяти микропроцессора с
шестнадцатиразрядной шиной адреса.

Микропроцессоры после включения питания и
выполнения процедуры сброса всегда начинают
выполнение программы с определЈнного адреса,
чаще всего нулевого. Однако есть и
исключения. Например процессоры, на основе
которых строятся универсальные компьютеры
IBM PC или Macintosh стартуют не с нулевого адреса. Программа должна храниться
в памяти, которая не стирается при выключении
питания, то есть в ПЗУ.

Выберем для
построения микропроцессорной системы микросхему ПЗУ
объЈмом 2 килобайта, как это показано на
рисунке 1. При рассмотрении построения
блока обработки сигналов мы договорились, что
процессор после сброса начинает работу с
нулевого адреса, поэтому разместим ПЗУ в
адресном пространстве начиная с нулевого адреса. Для того, чтобы нулевая ячейка
ПЗУ оказались расположенной по нулевому адресу адресного
пространства микропроцессора, старшие
разряды шины адреса должны быть равны 0.

При построении схемы необходимо
декодировать старшие пять разрядов адреса (определить,
чтобы они были равны 0). Это выполняется при помощи дешифратора
адреса
, который в данном случае вырождается в
пятивходовую схему «ИЛИ-НЕ» Это связано с
тем, что внутри ПЗУ уже есть одиннадцативходовый
дешифратор адреса. При использовании
дешифратора адреса, обращение к ячейкам
памяти выше двух килобайт не приведЈт к
чтению ячеек ПЗУ, так как на входе выбора
кристалла CS уровень напряжения останется
высоким.

Обратите внимание, что так как объЈм ПЗУ
меньше объЈма ОЗУ, то между областью
адресов ПЗУ и областью адресов ОЗУ
образовалось пустое пространство
неиспользуемых адресов памяти

И, наконец, так как все
микропроцессоры предназначены для
обработки данных, поступающих извне, то в
любой микропроцессорной системе должны
присутствовать порты ввода-вывода.
Порт ввода-вывода отображается в адресное
пространство микропроцессорного
устройства как одиночная ячейка памяти,
поэтому порт ввода вывода можно разместить
по любому свободному адресу. Проще всего
построить дешифратор числа FFFFh. В этом
случае дешифратор превращается в обычную 16-ти
входовую схему «И-НЕ», поэтому и
выберем эту ячейку памяти в адресном
пространстве микропроцессора для
размещения порта ввода-вывода.

Источник

Оцените статью
Adblock
detector