Шина данных предназначена для передачи управляющих сигналов

Шину данных, являющуюся основным информационным трактом МП системы, образуют 8 двунаправленных линий. По этой шине осуществляется обмен любой информацией между всеми компонентами системы, в частности, по ней передаются команды, операнды, результаты операций, вводимые и вы­водимые данные. Двунаправленность шины данных означает возможность пе­редачи информации в обоих направлениях (от МП и в МП). Направление пере­дачи определяется специальными управляющими сигналами, которые генери­рует МП. В любой момент времени по шине данных производится одна пере­дача в одном направлении.

Шина управления, состоящая из 10 линий, служит для передачи управ­ляющих сигналов, определяющих характер и порядок функционирования эле­ментов МП системы.

2. Структурная схема МП КР580ВМ80

image004

image005
image006 image007

image008

image009
image010

image011
image011
image012
image013

image014 image015

Рис. 2. Структурная схема МП КР580ВМ80

Микропроцессорная БИС КР580ВМ80 представляет собой однокри­стальный 8-разрядный микропроцессор с тремя шинами: однонаправленной 16-разрядной шиной адреса, двунаправленной 8-разрядной шиной данных и шиной управления.

Этот микропроцессор рассчитан на выполнение логических и арифмети­ческих операций с 8-разрядными числами в двоичной и десятичной системах счисления, а также операций с двойной точностью (с 16-разрядными числами).

В состав МП входят: арифметико-логическое устройство (АЛУ), устрой­ство управления (УУ) и блок внутренних регистров.

Арифметико-логическое устройство (АЛУ) выполняет одну из главных функций МП — обработку данных.

Блок внутренних регистров, расширяющий возможности АЛУ, служит внутренней памятью МП и используется для временного хранения данных и команд.

В состав этого блока входят: регистры общего назначения (РОН) и спе­циальные регистры: регистр-аккумулятор, буферный регистр адреса, буферный регистр данных, счетчик команд, регистр команд, указатель стека, регистр при­знаков. Рассмотрим функции этих регистров.

Основная функция регистров общего назначения (РОН) B, C, D, E, H, L, W, Z — хранение операндов, то есть подлежащих обработке данных. С другой стороны, они могут выполнять и роль специальных регистров. Регистры W и Z недоступны пользователю, а к остальным пользователь может обращаться с по­мощью специальных команд.

Регистр-аккумулятор, обычно называемый просто аккумулятором (обо­значается А), предназначен для временного хранения операнда или результата арифметических и логических операций, выполняемых АЛУ.

Буферный регистр адреса — специальный регистр, служащий для приема и хранения адресной части исполняемой команды. Иначе говоря, в нем содержится адрес слова, хранимого в ячейке внешней памяти.

Буферный регистр данных служит для временного хранения выбранного из памяти слова.

Счетчик команд — счетчик, содержащий адрес ячейки памяти, в кото­рую помещен код выполняемой команды. Обычно команды определенной про­граммы находятся в последовательно расположенных ячейках памяти.

Регистр команд принимает и хранит код очередной команды, адрес ко­торой хранится в счетчике команд.

Указатель стека (обозначается SP) — регистр, служащий для хранения адреса последней занятой ячейки стека, которую называют вершиной стека. Ко­гда в стек записывается очередное слово, то число в указателе уменьшается; при считывании из стека — увеличивается.

Регистр признаков (обозначается F) состоит из 5 флаговых битов. В за­висимости от результатов операций, выполняемых АЛУ, каждый флаг устанав­ливается в состояние «0» или «1». Флаговые биты, определяющие содержимое регистра признаков, индицируют 5 условных признаков: признак знака, признак нуля, признак переноса, признак вспомогательного переноса (из третьего раз­ряда сумматора в четвертый), признак четности.

Роль устройства управления в микропроцессоре заключается в поддер­жании требуемой последовательности функционирования всех его звеньев.

Схема десятичной коррекции служит для преобразования двоичного кода в двоично-десятичный при наличии соответствующей команды.

А15…А0 — 16-разрядная шина адреса;

D7…D0 — 8-разрядная двунаправленная шина данных;

HOLD — запрос захвата шин;

HLDA — подтверждение захвата шин;

INT — запрос прерывания;

INTE — подтверждение прерывания;

C1, C2 — тактовые импульсы.

3. Управляющие сигналы МП

Управляющие сигналы МП КР580ВМ80 можно объединить в следующие группы.

А) Группа сигналов управления состоянием микропроцессора:

1. Входной сигнал сброса (инициализации) RESET — заставляет МП начать выполнение программы с нулевой ячейки. Этот сигнал приво­дит МП в исходное состояние: обеспечивает нулевые значения счет­чика команд, указателя стека, нулевой сигнал на выходе HLDA (за­хват запрещен), нулевой адрес на шине адреса.

2. Входной сигнал готовности READY — поступает от других компо­нентов МП системы и служит для приостановки действий МП до тех пор, пока компонент не будет готов к обмену данными с МП.

3. Выходной сигнал WAIT — свидетельствует о том, что микропроцес­сор приостановлен.

Б) Группа сигналов управления шинами адреса и данных:

1. Выходной сигнал считывания (приема) DBIN — определяет направ­ление передачи по шине данных в МП.

2. Выходной сигнал записи (выдачи) WR — определяет направление передачи по шине данных в микропроцессор.

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Содержание
  1. Шина данных
  2. См. также
  3. Смотреть что такое «Шина данных» в других словарях:
  4. Шина данных это
  5. Шина данных это система передачи информации в ПК
  6. Компьютерная шина
  7. Основное деление компьютерных шин
  8. Одна из самых значимых устройств связи
  9. Производительность компьютера
  10. Системные шины в современных компьютерах
  11. Шины микропроцессорной системы и циклы обмена
  12. 2.1. Шины микропроцессорной системы
  13. Шина данных
  14. 1 Устройства всоставе персонального компьютера IBM-PC
  15. Шина — данные
  16. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.
  17. Внутренняя шина — данные
  18. Интерфейсы компьютера.
  19. 2 Системныеблоки корпуса персональных компьютеров
  20. 1. Обзор шин пк.
  21. Шина данных это система передачи информации в ПК
  22. Компьютерная шина
  23. Основное деление компьютерных шин
  24. Одна из самых значимых устройств связи
  25. Производительность компьютера
  26. Системные шины в современных компьютерах
  27. Внешняя шина — данные
  28. Адресное пространствомикропроцессорного устройства.

Шина данных

Шина данных — шина, предназначенная для передачи информации. В компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения всем устройствам (шина адреса) — кому эти данные предназначены.

На материнской плате шина может также состоять из множества параллельно идущих через всех потребителей данных проводников (например, в Архитектура IBM PC).

Основной характеристикой шины данных является её ширина в битах. Ширина шины данных определяет количество информации, которое можно передать за один такт.

См. также

48px Question book 4.svg

32px Computer.svg Это заготовка статьи о компьютерах. Вы можете помочь проекту, исправив и дополнив её.
Это примечание по возможности следует заменить более точным.
14px Searchtool.svg Компьютерные шины
Основные понятия Шина адреса • Шина данных • Шина управления • Пропускные способности
Процессоры BSB • FSB • DMI • HyperTransport • QPI
Внутренние AGP • ASUS Media Bus • EISA • InfiniBand • ISA • LPC • MBus • MCA • NuBus • PCI • PCIe • PCI-X • Q-Bus • SBus • SMBus • VLB • VMEbus • Zorro III
Ноутбуки ExpressCard • MXM • PC Card
Накопители ST-506 • ESDI • ATA • eSATA • Fibre Channel • HIPPI • iSCSI • SAS • SATA • SCSI
Периферия 1-Wire • ADB • I²C • IEEE 1284 (LPT) • IEEE 1394 (FireWire) • Multibus • PS/2 • RS-232 • RS-485 • SPI • USB • Игровой порт
Универсальные Futurebus • InfiniBand • QuickRing • SCI • RapidIO • IEEE-488 • Thunderbolt (Light Peak)

Смотреть что такое «Шина данных» в других словарях:

Шина Данных — в компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения всем устройствам (шина адреса) кому эти Данные предназначены. На… … Википедия

шина данных — Шина интерфейса, предназначенная для передачи данных. [ГОСТ Р 50304 92 ] Тематики системы для сопряж. радиоэлектр. средств интерфейсные Обобщающие термины средства реализации взаимодействия EN data bus … Справочник технического переводчика

шина данных — 72 шина данных: Шина интерфейса, предназначенная для передачи данных Источник: ГОСТ Р 50304 92: Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения … Словарь-справочник терминов нормативно-технической документации

шина данных — duomenų magistralė statusas T sritis automatika atitikmenys: angl. data bus; data highway; data path; dataway vok. Datenbus, m; Datenleitung, f; Datenweg, m rus. шина данных, f pranc. bus de données, m … Automatikos terminų žodynas

Шина данных — 1. Шина интерфейса, предназначенная для передачи данных Употребляется в документе: ГОСТ Р 50304 92 Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения … Телекоммуникационный словарь

S-100 (шина данных) — S 100 Универсальная интерфейсная шина спроектированная компанией MITS в 1974 году специально для Altair 8800, считающимся на сегодняшний день первым персональным компьютером. Шина S 100 была первой интерфейсной шиной для микрокомпьютерной… … Википедия

Шина адреса — Шина адреса компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для… … Википедия

шина AT-bus — шина усовершенствованной технологии Системный интерфейс, разработанный фирмой IBM для ПЭВМ серии IBM PC AT, является развитием системного интерфейса XT bus, обеспечивает совместимость с ним. В интерфейсе используются 16 разрядная шина данных, 24… … Справочник технического переводчика

Шина управления — компьютерная шина, по которой передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен… … Википедия

Читайте также:  Узкие или широкие шины на уаз

Шина Адреса — компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство желает обратиться для проведения операции… … Википедия

Источник

Шина данных это

lazy placeholder

Шина данных это система передачи информации в ПК

Шина данных это одна из самых важных шин, из-за необходимости которой собственно и формируется вся остальная система. Численность имеющихся у нее разрядов указывает на скорость и производительность обмена данными, кроме этого определяет наибольшее число выполняемых команд. Шина данных это устройство, которое передает данные всегда в двух направлениях.

Для работы компьютера предполагается наличие в его составе комплекса определенных систем, и отсутствие хотя бы одной из них приведет к полной неработоспособности ПК. Ниже перечислены основные системы:

Но все-таки эти модули, даже в комплексе не будут выполнять тех функций, которые от них требуются. Для того, чтобы все компоненты функционировали как положено, среди них создается взаимосвязь, с помощью которой будет выполняться необходимые вычислительные и другие операции. Средства связи такого рода создают именно компьютерные системные шины. Следовательно, можно утверждать, что данный компонент является крайне необходимым элементом в компьютерном блоке.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Основное деление компьютерных шин

lazy placeholder

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Одна из самых значимых устройств связи

Все действия выполняемые нами с помощью компьютера, будь то работа с документами или прослушивание музыкальных треков, компьютерные игры — все это возможно только благодаря процессору. Равным образом и процессор не может выполнять свои функции, не имея при этом магистральной связи с остальными значимыми компонентами осуществляющими полноценную работу компьютера. То есть, именно с помощью системной шины процессора организуется в одно целое комплекс устройств.

Производительность компьютера

Все основные компьютерные шины в зависимости от предназначения, делятся на несколько категорий:

lazy placeholder

У процессора может быть задействовано несколько системных трактов связи, при этом, как показала практика, наличие определенного количества шин увеличивает эффективность работы компьютера. Пропускная способность компьютерной шины в большей части определяет производительность ПК. Принцип ее действия заключается в определение скорости трансляции данных, передающихся с локальных устройств на другие вычислительные модули и обратно.

Системные шины в современных компьютерах

Стандартная локальная шина, разработанная ассоциацией VESA, получила компетентное признание в мире компьютерных технологий. Официальное ее название VL-Bus и она же является одной из самых популярных шин локального назначения со дня ее представления. Используя шину VL-Bus можно осуществлять 32-разрядную передачу информации между графическим адаптером и процессором либо винчестером.

lazy placeholder

Однако, такая магистраль связи не способна поддерживать корректную работу микропроцессора. Вследствие этого она встраивается в систему вместе с 16-разрядной шиной ISA, и таким образом выполняет функции дополнительного расширения.

Компьютерная шина, оперативка, центральный процессор и мосты

Источник

Шины микропроцессорной системы и циклы обмена

Циклы обмена информацией делятся на два основных типа:

В некоторых микропроцессорных системах существует также цикл «чтение-модификация- запись » или же «ввод-пауза- вывод «. В этих циклах процессор сначала читает информацию из памяти или устройства ввода/вывода, затем как-то преобразует ее и снова записывает по тому же адресу. Например, процессор может прочитать код из ячейки памяти, увеличить его на единицу и снова записать в эту же ячейку памяти. Наличие или отсутствие данного типа цикла связано с особенностями используемого процессора.

Особое место занимают циклы прямого доступа к памяти (если режим ПДП в системе предусмотрен) и циклы запроса и предоставления прерывания (если прерывания в системе есть). Когда в дальнейшем речь пойдет о таких циклах, это будет специально оговорено.

Во время каждого цикла устройства, участвующие в обмене информацией, передают друг другу информационные и управляющие сигналы в строго установленном порядке или, как еще говорят, в соответствии с принятым протоколом обмена информацией.

Длительность цикла обмена может быть постоянной или переменной, но она всегда включает в себя несколько периодов сигнала тактовой частоты системы. То есть даже в идеальном случае частота чтения информации процессором и частота записи информации оказываются в несколько раз меньше тактовой частоты системы.

Чтение кодов команд из памяти системы также производится с помощью циклов чтения. Поэтому в случае одношинной архитектуры на системной магистрали чередуются циклы чтения команд и циклы пересылки (чтения и записи) данных, но протоколы обмена остаются неизменными независимо от того, что передается — данные или команды. В случае двухшинной архитектуры циклы чтения команд и записи или чтения данных разделяются по разным шинам и могут выполняться одновременно.

2.1. Шины микропроцессорной системы

Прежде чем переходить к особенностям циклов обмена, остановимся подробнее на составе и назначении различных шин микропроцессорной системы.

Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

2 1

Шина управления — это вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave ). Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.

Сигналы шины управления могут передаваться как в положительной логике (реже), так и в отрицательной логике (чаще). Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий ), с открытым коллектором (для двунаправленных и мультиплексированных линий).

2 2

По используемому типу обмена магистрали микропроцессорных систем также делятся на синхронные и асинхронные.

Источник

Шина данных

1 Устройства всоставе персонального компьютера IBM-PC

ac40f1b8da25a91030106d2e111e0ff7

Системный
блок, монитор, клавиатура и периферийные
устройства

Внешний
вид персонального компьютера может иметь
самые разнообразные формы. Как правило, мы
можем выделить несколько крупных объектов,
оформленных в виде отдельных компонент
соединенных кабелями или шлейфами,
представляющих персональный компьютер
непосредственно и периферийные
компоненты
. В зависимости от
реализации исполнения и дизайна корпуса
системного блока
, монитора
и клавиатуры они могут быть
объединены в один или более общих корпусов
и выполняться как совершенно
самостоятельные отдельные элементы.

Шина — данные

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы.

Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов ( линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Структурная схема МК подгруппы PIC16F8X.

Шина данных и память данных ( ОЗУ) — имеют ширину 8 бит, а программная шина и программная память ( ПЗУ) имеют ширину 14 бит. Такая концепция обеспечивает простую, но мощную систему команд, разработанную так, что битовые, байтовые и регистровые операции работают с высокой скоростью и с перекрытием по времени выборок команд и циклов выполнения. Двухступенчатый конвейер обеспечивает одновременную выборку и исполнение команды. Все команды выполняются за один цикл, исключая команды переходов.

Шина данных — эти сигналы обеспечивают двунаправленную шину данных для доступа к внешней памяти программ.

Структура шины микрокомпьютерной системы.

Шина данных предназначена для перемещения данных внутри компьютера, например между запоминающим устройством и процессором.

Шина данных работает в режиме двунаправленной передачи. Это означает, что по ней можно передавать слова в обоих направлениях, но, разумеется, не одновременно: требуется применение специальных буферных схем и мультиплексного режима1 обмена данными между микропроцессором и внешней памятью.

Шина данных — двунаправленная шина, по которой данные могут на правляться либо в микропроцессор, либо нз него ( на рнс. По такой шине данные невозможно одновременно передавать в обоих направлениях. Эти процедуры разнесены во времени в результате применения временного мультиплексирования.

Шина данных является двунаправленной, как частично и шина управления. От МП по ША передаются адреса соответствующих внешних устройств ( ВУ) и памяти. Объем адресуемой памяти колеблется от 64К до Ш слов с разрядностью от 8 до 32 бит.

Шина данных — двунаправленная, ибо каждый функциональный узел ( кроме ПЗУ) должен как принимать, так и передавать информацию.

Шина данных ( Д) включает в себя 16 двунаправленных линий для обмена 16-разрядными словами или байтами.

Читайте также:  Структура машин с общей шиной

Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ
в ЭВМ состоят из последовательности
ячеек, каждая из которых содержит
значение 1-ого байта и имеет собственный
номер (адрес), по которому происходит
обращение к ее содержимому. Все данные
в ЭВМ хранятся в двоичном виде (0,1).

ЗУ
характеризуется 2-мя параметрами:

-объем
памяти — размер в байтах, доступных для
хранения информации

-Время
Доступа к ячейкам памяти — средний
временной интервал в течении кот.
находится требуемая ячейка памяти и из
нее извлекаются данные.

Оперативное
запоминающее устройство (ОЗУ; RAM
– Random
Access
Memory)
предназначено для оперативной записи,
хранения и чтения информации (программ
и данных), непосредственно участвующей
в информационно-вычислительном процессе,
выполняемом ЭВМ в текущий период времени.
После выключения питания ЭВМ, информация
в ОЗУ уничтожается. (В ЭВМ на базе
процессоров Intel Pentium
используется 32-разрядная адресация.
Т.е число адресов 232,
то есть возможное адресное пространство
составляет 4,3 Гбайт. время доступа
0,005-0,02 мкс. 1 с = 106 мкс.

Постоянное
запоминающее устройство (ПЗУ; ROM
– Read
Only
Memory)
хранит неизменяемую (постоянную)
информацию: программы, выполняемые во
время загрузки системы, и постоянные
параметры ЭВМ. В момент включения ЭВМ
в его ОЗУ отсутствуют данные, так как
ОЗУ не сохраняет данные после выключения
ЭВМ. Но МП необходимы команды, в том
числе и сразу после включения. Поэтому
МП обращается по специальному стартовому
адресу, который ему всегда известен, за
своей первой командой. Этот адрес из
ПЗУ. Основное назначение программ из
ПЗУ состоит в том, чтобы проверить состав
и работоспособность системы и обеспечить
взаимодействие с клавиатурой, монитором,
жесткими и гибкими дисками. Обычно
изменить информацию ПЗУ нельзя. Объем
ПЗУ 128-256 Кбайт, время доступа
0,035-0,1 мкс. Так как объем ПЗУ небольшой,
но время доступа больше, чем у ОЗУ, при
запуске все содержимое ПЗУ считывается
в специально выделенную область ОЗУ.

Энергонезависимая
память CMOS
RAM
(Complementary
Metal-Oxide
Semiconductor
RAM),
в которой хранятся данные об аппаратной
конфигурации ЭВМ: о подключенных к ЭВМ
устройствах и их параметры, параметры
загрузки, пароль на вход в систему,
текущее время и дата. Питание памяти
CMOS
RAM
осуществляется от батарейки. Если заряд
батарейки заканчивается, то настройки,
хранящиеся в памяти CMOS
RAM,
сбрасываются, и ЭВМ использует настройки
по умолчанию.

ПЗУ
и память CMOS
RAM
составляют базовую систему ввода-вывода
(BIOS
– Basic
Input-Output
System).

Внешние
ЗУ. ВЗУ для долговременного хранения и
транспортировки информации. ВЗУ
взаимодействуют с сист. шиной через
контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают
интерфейс ВЗУ и сист. шины в режиме
прямого доступа к памяти, т.е. без участия
МП. ИНТЕРФЕЙС — это совокупность связей
с унифицированными сигналами и аппаратуры,
предназначенной для обмена данными
между устройствами вычислительной
системы.

ВЗУ
можно разделить по критерию транспортировки
на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные
ВЗУ состоят из носителя, подключ-ого к
порту вв/вывода (обычно ЮСБ), (флеш-память)
или носителя и привода (накопители на
ГМД, приводы СиДи и ДВД). В стационарных
ВЗУ носитель и привод объединены в
единое устройство (НЖМД). Стационарные
ВЗУ предназначены для хранения информации
внутри ЭВМ.

Перед
первым использованием или в случае
сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь
— записать на носитель служебную
информацию.

Основные
Технические Характеристики ВЗУ

-Информационная
емкость определяет наибольшее кол-во
ед. данных, кот может одновременно
хранить в ВЗУ (зависит от площади объема
носителя и плотности записи.)

-Плотность
записи — число бит информации, записанных
на единице поверхности носителя.
Различают продольную плотность (бит/мм),
и поперечную плотность.//

-Время
доступа — интервал времени от момента
запроса (чтения или записи) до момента
выдачи блока (включая время поиска
инфции на носителе и время чтения или
записи.)

-Скорость
передачи данных определяет кол-во
данных, считываемых или записываемых
в единицу времени и зависит от скорости
движения носителя, плотности записи,
числа каналов и тп.

Внутренняя шина — данные

Внутренняя шина данных соединяет между собой основные части МП. Шиной называют группу линий передачи информации, объединенных общим функциональным признаком. В микропроцессорной системе используются три вида шин: данных, адресов и управления.

Структурная схема 8-разрядного микропроцессора ( операция завершена, в аккумуляторе новые данные, процессор ожидает следующую команду.

Внутренняя шина данных представляет собой линию двусторонней связи.

Микропроцессор U 8081 с указанием размеров ( в мм.

По внутренней шине данных и адресов передаются управляющая информация, 14-разрядные адреса и данные в режиме работы с разделением времени. Передача осуществляется между отдельными функциональными блоками ЦП, a также между ЦП и внешними ЗУ. Начало работы и ее окончание определяются для каждого функционального блока при помощи управляющих сигналов.

Структурная схема 8-разрядного микропроцессора.| Формирование с разными фазами.
Структурная схема 8-разрядного микропроцессора ( аккумулятор и регистр D загружены данными, и регистре команд находится команда ADD. в это время регистр D и аккумулятор не соединены ни с каким другими узлами.

Интерфейсы компьютера.

Интерфейс – совокупность средств сопряжения и связи, обеспечивающая эффективное взаимодействие систем или частей.

В интерфейсе обычно предусмотрено сопряжение на двух уровнях:

— механическом (провода, элементы связи, типы соединений, разъемы, номера контактов ит.д.)

— логическом (сигналы, их длительность, полярности, частоты и амплитуда, протоколы взаимодействия).

Все интерфейсы ЭВМ можно разделить на внутренние и внешние:

— внутренние – система связи и сопряжения узлов и блоков ПК между собой;

— внешние – обеспечивают связь ПК с внешними (периферийными) устройствами и другими компьютерами.

2 Системныеблоки корпуса персональных компьютеров

Системные
блоки IBM РС выполняются в различных
геометрических вариантах. Так по форме,
расположению внутренних узлов, рабочему
положению и размерам, обычно, выделяют
корпуса с вертикальным и горизонтальным
пространственным расположением элементов.

e9a842cd4bcae0cdbb6e065019c92ab1

Корпуса с
горизонтальным расположением делят на типы:
нормальный (normal), малый (baby)
и сверх малый (slim)

Корпуса
с вертикальным расположением называют
типом башня (tower) и делят на виды: 1 – малый (mini
tower), 2 – средний (midi tower) и 3 – большой (big tower).
Как правило, корпуса такого исполнения
отличаются друг от друга видом передней
панели и общей полезной высотой, в то время
как, их ширина, длинна и глубина различаются
незначительно. На передней панели
системного блока располагаются некоторые
элементы управления, а именно: тумблер-выключатель
напряжения питания сети (Power), кнопка сброса
– перезагрузки (Reset), кнопка включения/выключения
режима турбирования (Turbo), индикаторы этих
режимов, индикатор обращения к жесткому
диску, передние панели дисковых и ленточных
устройств — накопителей информации со
сменными носителями и другие комплектующие
элементы и части устройств, требующие
простого и частого доступа при
использовании.

55a0a8bdf61b7503487f06138ff3a5cbВнутри
системного блока размещаются основные
внутренние компоненты персонального
компьютера: материнская плата – 3, платы
адаптеров, интерфейсов, контроллеров
устройств, карт, расширений и их разъемы –
10, дисковые накопители – 8 и 13, блок питания
– 6, соединительные шлейфы, шнуры и кабели –
4, 7, вентилятор системы охлаждения
внутренних элементов – 1, вентилятор и
радиатор системы охлаждения центрального
процессора – 2, слоты системной шины – 9,
отверстие разъема клавиатуры – 11 и входной
и выходной разъемы подключения питания – 12
и т.д.. Так как многие компоненты могут быть
интегрированы на материнской плате, то не
все они могут быть представлены как
отдельные комплектующие элементы. Задняя
панель, как правило, содержит панели плат
расширений с разъемами, заглушки разъемов,
вентиляционное отверстие вентилятора
блока питания – 5 и др.

Корпус
может быть выполнен из металла, пластика и
комбинации того и другого. Как правило, все
комплектующие элементы, расположенные
внутри системного блока, крепятся изнутри к
металлической раме – 3, состоящей из днища
– 8, задней панели – 3 и передней панели – 7,
на которую затем надевается кожух – 2. В
передней панели имеется одно или несколько
окон – 1, предназначенных для вывода на
лицевую – переднюю часть управляющих
панелей устройств, требующих постоянного
доступа во время эксплуатации (магнитные,
оптические, магнитооптические дисководы,
ленточные накопители и др.). Задняя панель,
также, имеет отверстия и окна для вывода на
заднюю часть системы охлаждения блока
питания – 4, разъемов интерфейсов
периферийных устройств – 5, заглушек плат
интерфейсных карт – 6.

1. Обзор шин пк.

Все компоненты ПК объединены между
собой проводниками (кабелями) позволяющими
обмениваться данными, адресной
информацией, управлять режимами работы,
подключать питание и т.д.

Группы проводников, объединённые по
определённым признакам носят название
шин или магистралей.

В архитектуре ПК выделяют системные
шины (шины расширения — Expansion Bus) и
локальные шины. Основной обязанностью
системной шины является передача
информации между базовым МП и остальными
электронными компонентами компьютера.

Локальные шины вводятся для повышения
производительности ПК при работе с
устройствами, требующими передачи
больших объёмов информации (например,
накопителей, видеоадаптеров). Локальные
шины связывают между собой процессор
непосредственно с контроллерами
периферийных устройств.

Как следует из названия системные шины
(шины расширения) предназначены для
подключения различных адаптеров
периферийных устройств, расширяющих
возможности компьютера.

Интерфейсы шин начали свою историю с
8-битной шины ISA. Открытость этой шины
обеспечила появление широкого спектра
плат расширения, позволяющих использовать
PC в различных случаях, вплоть до применения
в качестве управляющего компьютера в
различных системах автоматизации.

Читайте также:  Совместимость масел для акпп тойота

С появлением АТ-286 шина ISA была
модифицирована, что позволило повысить
её производительность. Шина EISA явилась
откликом на потребность в
высокопроизводительном обмене для
серверов. Это довольно дорогая шина и
распространена не так широко. В шину
EISA можно установить и ISA – адаптеры.

Шина МСА, выдвинутая фирмой IBM как
прогрессивная альтернатива ISA, не была
поддержана производителями блоков PC,
так её спецификация не была открытой.
В результате она практически отмерла
вместе с семейством ПК IBM PS/2.

C появлением МП i486 появилась потребность
в повышении производительности
вычислительной системы, т.о. родилась
локальная шина VLB. Принципиальная
привязка к шине процессора 486 не обеспечила
ей долгого существования — пришла пора
Pentium.

Шина PCI является в настоящее время
стандартной для ПК и используется с
процессорами 4,5 и 6 поколений.

Развитием шины PCI, нацеленным на дальнейшее
повышение производительности обмена,
является порт AGP, специально предназначенный
для подключения мощных графических
адаптеров.

Местоположение шин в архитектуре
современных ПК иллюстрирует рис.26.1.

af601072c2aeeefd95f02a336a1529e3

Шина данных это система передачи информации в ПК

Шина данных это одна из самых важных шин, из-за необходимости которой собственно и формируется вся остальная система. Численность имеющихся у нее разрядов указывает на скорость и производительность обмена данными, кроме этого определяет наибольшее число выполняемых команд. Шина данных это устройство, которое передает данные всегда в двух направлениях.

Но все-таки эти модули, даже в комплексе не будут выполнять тех функций, которые от них требуются. Для того, чтобы все компоненты функционировали как положено, среди них создается взаимосвязь, с помощью которой будет выполняться необходимые вычислительные и другие операции. Средства связи такого рода создают именно компьютерные системные шины. Следовательно, можно утверждать, что данный компонент является крайне необходимым элементом в компьютерном блоке.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Основное деление компьютерных шин

3ac1a19d75f55284165a4393704c6256df3f2e5d9c4a87c0011f1207d8ac8806

Отличие шин друг от друга базируется на нескольких моментах. Главным признаком считается Первенствующим показателем является место расположения. Исходя из этого шины бывают следующих типов:

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Одна из самых значимых устройств связи

Все действия выполняемые нами с помощью компьютера, будь то работа с документами или прослушивание музыкальных треков, компьютерные игры — все это возможно только благодаря процессору. Равным образом и процессор не может выполнять свои функции, не имея при этом магистральной связи с остальными значимыми компонентами осуществляющими полноценную работу компьютера. То есть, именно с помощью системной шины процессора организуется в одно целое комплекс устройств.

Производительность компьютера

Все основные компьютерные шины в зависимости от предназначения, делятся на несколько категорий:

7291cbf02e109ab6f4d2c011ff2011287e61e4ee19366757016a07ed54ef18a3

У процессора может быть задействовано несколько системных трактов связи, при этом, как показала практика, наличие определенного количества шин увеличивает эффективность работы компьютера. Пропускная способность компьютерной шины в большей части определяет производительность ПК. Принцип ее действия заключается в определение скорости трансляции данных, передающихся с локальных устройств на другие вычислительные модули и обратно.

Системные шины в современных компьютерах

Стандартная локальная шина, разработанная ассоциацией VESA, получила компетентное признание в мире компьютерных технологий. Официальное ее название VL-Bus и она же является одной из самых популярных шин локального назначения со дня ее представления. Используя шину VL-Bus можно осуществлять 32-разрядную передачу информации между графическим адаптером и процессором либо винчестером.

1b339e51c0e0d790c54b8b221f24574c0fab382facc5f5233f439b80ed16d908

Однако, такая магистраль связи не способна поддерживать корректную работу микропроцессора. Вследствие этого она встраивается в систему вместе с 16-разрядной шиной ISA, и таким образом выполняет функции дополнительного расширения.

Компьютерная шина, оперативка, центральный процессор и мосты

Внешняя шина — данные

Внешняя шина данных выходит за пределы МП. Эти шины обеспечивают пропуск кодовой комбинации ( слова) на число разрядов, на которое рассчитан данный МП. У наиболее распространенных однокристальных МП ширина шины данных или магистрали составляет восемь разрядов. Связь внутри МП и с внешними устройствами осуществляется также с помощью шины адреса и шины управления.

Микросхемы представляют собой 16-битовый микропроцессор с 8-битовой внешней шиной данных ( центральное процессорное устройство с байтовым принципом организации) и предназначены для перевода аппаратных средств, построенных на К580ВМ80 и К580ВМ85, на программную среду К1810ВМ86 для повышения производительности. Различия состоят в изменении разрядности шины данных и соответствующих изменениях структуры и работы шинного интерфейса. БНЕзаме-нена линией состояния SSO, так как К1810ВМ88 может обращаться только к байтам и надобность в сигнале разрешения старшего байта шины SHE отпадает.

Как и процессор 8086, 80286 имеет 16-разрядную внешнюю шину данных и 6-байтный конвейер команд. Однако быстродействие процессора 80286 при тактовой частоте 12 5 МГц примерно в 6 раз выше, чем у 8086 с тактовой частотой 5 М Гц. Это достигается за счет усовершенствованной архитектуры и снижения количества тактов на одну команду.

Принцип двунаправленной, rj днных и алпеоа поелостав-передачи между внутренней и внеш — шин Данных и адреса., предосгав ней шинами данных ляя их в распоряжение внешних.

Буферы данных и буферы адреса обеспечивают связь центрального процессора с внешними шинами данных и адреса. Особенность буферов состоит в том, что в каждом разряде они используют логические элементы с тремя состо-яниями.

Обмен 8-разрядными командами и данными между микропроцессором и внешними устройствами производится по 8-разрядной внешней шине данных DO — D7 через буферный регистр данных, который может находиться в трех состояниях — О, 1 и с высоким выходным сопротивлением, т.е. когда он отключается от внешней шины данных.

Структурная схема однокристального МП.
Типовая структура цифровой системы обработки сигналов.

Снаружи процессор представляет собой 32-битовое устройство. Внешняя шина данных к памяти является 64-битовой, удваивая количество данных, передаваемых в течение одного шинного цикла.

Обмен кодами между памятью команд, памятью данных, периферийными устройствами и МП осуществляется через двунаправленный буфер шины данных. Последний изолирует внешнюю шину данных от внутренней. Это позволяет упростить подключение к одной шине нескольких устройств.

Адресное пространствомикропроцессорного устройства.

Адресное пространство микропроцессорного
устройства изображается графически
прямоугольником, одна из сторон которого
представляет разрядность адресуемой ячейки
этого микропроцессора, а другая сторона — весь
диапазон доступных адресов для этого же
микропроцессора. Обычно в качестве
минимально адресуемой ячейки памяти
выбирается восьмиразрядная ячейка памяти (байт).
Диапазон доступных адресов
микропроцессора определяется разрядностью шины
адреса системной шины. При этом минимальный
номер ячейки памяти (адрес) будет равен 0, а
максимальный определяется из формулы:

Для шестнадцатиразрядной шины это будет число
65535 (64K). Адресное пространство этой шины и
распределение памяти микропроцессорной
системы, изображЈнной на рисунке 1, приведено на рисунке
2, а
распределение памяти микропроцессорной
системы, изображЈнной на рисунке 1, приведено на рисунке
3.

63823f6b22394b11983ec4672211dac6

Рисунок 2. Адресное пространство шестнадцатиразрядной
шины адреса.

8055c537cbee8fce35caca3545e1487b

Рисунок 3. Распределение памяти микропроцессора с
шестнадцатиразрядной шиной адреса.

Микропроцессоры после включения питания и
выполнения процедуры сброса всегда начинают
выполнение программы с определЈнного адреса,
чаще всего нулевого. Однако есть и
исключения. Например процессоры, на основе
которых строятся универсальные компьютеры
IBM PC или Macintosh стартуют не с нулевого адреса. Программа должна храниться
в памяти, которая не стирается при выключении
питания, то есть в ПЗУ.

Выберем для
построения микропроцессорной системы микросхему ПЗУ
объЈмом 2 килобайта, как это показано на
рисунке 1. При рассмотрении построения
блока обработки сигналов мы договорились, что
процессор после сброса начинает работу с
нулевого адреса, поэтому разместим ПЗУ в
адресном пространстве начиная с нулевого адреса. Для того, чтобы нулевая ячейка
ПЗУ оказались расположенной по нулевому адресу адресного
пространства микропроцессора, старшие
разряды шины адреса должны быть равны 0.

При построении схемы необходимо
декодировать старшие пять разрядов адреса (определить,
чтобы они были равны 0). Это выполняется при помощи дешифратора
адреса
, который в данном случае вырождается в
пятивходовую схему «ИЛИ-НЕ» Это связано с
тем, что внутри ПЗУ уже есть одиннадцативходовый
дешифратор адреса. При использовании
дешифратора адреса, обращение к ячейкам
памяти выше двух килобайт не приведЈт к
чтению ячеек ПЗУ, так как на входе выбора
кристалла CS уровень напряжения останется
высоким.

Обратите внимание, что так как объЈм ПЗУ
меньше объЈма ОЗУ, то между областью
адресов ПЗУ и областью адресов ОЗУ
образовалось пустое пространство
неиспользуемых адресов памяти

И, наконец, так как все
микропроцессоры предназначены для
обработки данных, поступающих извне, то в
любой микропроцессорной системе должны
присутствовать порты ввода-вывода.
Порт ввода-вывода отображается в адресное
пространство микропроцессорного
устройства как одиночная ячейка памяти,
поэтому порт ввода вывода можно разместить
по любому свободному адресу. Проще всего
построить дешифратор числа FFFFh. В этом
случае дешифратор превращается в обычную 16-ти
входовую схему «И-НЕ», поэтому и
выберем эту ячейку памяти в адресном
пространстве микропроцессора для
размещения порта ввода-вывода.

Источник

Оцените статью
Adblock
detector