Шина данных архитектуры фон неймана

Принципы фон Неймана (Архитектура фон Неймана)

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принципы фон Неймана

Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

Для сравнения, программа компьютера ENIAC (где не было хранимой в памяти программы) определялась специальными перемычками на панели. Чтобы перепрограммировать машину (установить перемычки по-другому) мог потребоваться далеко не один день. И хотя программы для современных компьютеров могут писаться годы, однако они работают на миллионах компьютеров после несколько минутной установки на жесткий диск.

Как работает машина фон Неймана

Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

Команда состоит из указания, какую операцию следует выполнить (из возможных операций на данном «железе») и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат (если его требуется сохранить в ЗУ).

Арифметико-логическое устройство выполняет указанные командами операции над указанными данными.

Из арифметико-логического устройства результаты выводятся в память или устройство вывода. Принципиальное различие между ЗУ и устройством вывода заключается в том, что в ЗУ данные хранятся в виде, удобном для обработки компьютером, а на устройства вывода (принтер, монитор и др.) поступают так, как удобно человеку.

УУ управляет всеми частями компьютера. От управляющего устройства на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии.

Управляющее устройство содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы. УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство — «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

Источник

Архитектура фон Неймана. Шины компьютера. Порты компьютера.

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Описание компьютера на некотором общем уровне называется его архитектурой. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативной памяти, внешних запоминающих и периферийных устройств. Различают однопроцессорную и многопроцессорную архитектуры компьютера.

В 1941 г. Джон фон Нейман изложил принципы работы и обосновал принципиальную схему компьютера с классической однопроцессорной архитектурой, в соответствии с которой компьютер должен иметь следующие устройства:

· арифметическо-логической устройство (АЛУ), выполняющее арифметические и логические операции (Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов);

· устройство управления (УУ), организующее процесс выполнения программы (Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности);

· внешнее устройство (ВУ) для ввода и вывода информации.

Принципиальная схема компьютера с классической архитектурой приведена на рис.2.1.

image002image003

Рис.1 Принципиальная схема компьютера с классической архитектурой:

у image004правляющие связи

и image005нформационные связи

К однопроцессорной архитектуре относится и архитектура персонального компьютера с общей шиной (рис.2). Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью, или системной шиной.

image007

Основа компьютера — процессор, в нем расположены АЛУ и УУ. АЛУ осуществляет непосредственную обработку данных, а УУ координирует взаимодействие различных частей компьютера. В запоминающем устройстве (памяти) в закодированном виде хранится информация (та, которая вводится в компьютер, и та, которая возникает в процессе работы). Компьютер имеет внешнее запоминающее устройство (внешнюю память).

В процессе работы процессор и память взаимодействуют между собой, но процессор, кроме того, организует работу остальных устройств компьютера: клавиатуры, дисплея, дисководов и т.д. Эти устройства осуществляют связь компьютера с внешним миром, поэтому называются внешними.

Процессор, выполняя определенную программу, координирует работу внешних устройств, посылая им и принимая от них информацию. Информация при этом передается в виде электрических импульсов двух видов — низкого и высокого напряжения. Тем самым информация в компьютере кодируется двумя символами: 0 и 1.

Процессор связан с внешними устройствами через магистраль (системную шину). По сути, это пучок проводов. К шине параллельно подсоединены все внешние устройства, как к телефонному кабелю. Обращение процессора к внешнему устройству похоже на вызов абонента по телефону. Все устройствапронумерованы. Когда нужно обратиться к внешнему устройству, в шину посылается его номер.

Читайте также:  Сколько стоит ремонт акпп тойота камри

Каждое внешнее устройство снабжено специальным приемником сигналов — контроллером. Контроллер играет роль телефонного аппарата — он принимает сигнал от процессора и дешифрует его.

Процессор подает команду, но ему безразлично, как она будет выполняться, поскольку за это отвечает контроллер соответствующего внешнего устройства. Поэтому при наличии соответствующих контроллеров одни внешние устройства можно заменять на другие.

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип построения.

Персональный компьютер напоминает обыкновенный конструктор. Схемы, управляющие всеми устройствами (монитором, дисками, принтером, модемом и т.д.), реализованы на отдельных платах, которые вставляются в слоты — стандартные разъемы системной платы. Весь компьютер питается от единого блока питания. Этот принцип, названный принципом открытой архитектуры, наряду с другими достоинствами обеспечил большой спрос на персональные компьютеры.

640 1

image009 1. Монитор 2. Материнская плата 3. Процессор 4. IDE-слот 5. Оперативная память 6. Платы расширения (видео, звуковая…) 7. Блок питания 8. Привод для дисков (CD/ DVD) 9. Винчестер 10. Клавиатура 11. Мышь

Рис. 3. Расположение основных устройств, входящих в состав ПК.

Источник

Архитектура фон Неймана

архитектура микропроцессорных систем фон Неймана (одношинная, или принстонская, архитектура) представляет собой архитектуру с общей, единой шиной для данных и команд. Соответственно, в составе системы в этом случае присутствует одна общая память, как для данных, так и для команд (рис. 5.1).

image008

Рис. 5.2. Архитектура с общей шиной данных и команд.

Но существует также и альтернативный тип архитектуры микропроцессорной системы – это архитектура с раздельными шинами данных и команд (двухшинная, или гарвардская, архитектура). Эта архитектура предполагает наличие в системе отдельной памяти для данных и отдельной памяти для команд (рис. 5.2). Обмен процессора с каждым из двух типов памяти происходит по своей шине.

image009

Рис. 5.3. Архитектура с раздельными шинами данных и команд.

Архитектура с общей шиной распространена гораздо больше, она применяется, например, в персональных компьютерах и в сложных микрокомпьютерах. Архитектура с раздельными шинами применяется в основном в однокристальных микроконтроллерах.

Рассмотрим некоторые достоинства и недостатки обоих архитектурных решений.

Архитектура с общей шиной (принстонская, фон-неймановская) проще, она не требует от процессора одновременного обслуживания двух шин, контроля обмена по двум шинам сразу. Наличие единой памяти данных и команд позволяет гибко распределять ее объем между кодами данных и команд. Например, в некоторых случаях нужна большая и сложная программа, а данных в памяти надо хранить не слишком много. В других случаях, наоборот, программа требуется простая, но необходимы большие объемы хранимых данных. Перераспределение памяти не вызывает никаких проблем, главное – чтобы программа и данные вместе помещались в памяти системы. Как правило, в системах с такой архитектурой память бывает довольно большого объема (до десятков и сотен мегабайт). Это позволяет решать самые сложные задачи.

Архитектура с раздельными шинами данных и команд сложнее, она заставляет процессор работать одновременно с двумя потоками кодов, обслуживать обмен по двум шинам одновременно. Программа может размещаться только в памяти команд, данные – только в памяти данных. Такая узкая специализация ограничивает круг задач, решаемых системой, так как не дает возможности гибкого перераспределения памяти. Память данных и память команд в этом случае имеют не слишком большой объем, поэтому применение систем с данной архитектурой ограничивается обычно не слишком сложными задачами.

В чем же преимущество архитектуры с двумя шинами (гарвардской)? В первую очередь, в быстродействии.

Дело в том, что при единственной шине команд и данных процессор вынужден по одной этой шине принимать данные (из памяти или устройства ввода/вывода) и передавать данные (в память или в устройство ввода/вывода), а также читать команды из памяти. Естественно, одновременно эти пересылки кодов по магистрали происходить не могут, они должны производиться по очереди. Современные процессоры способны совместить во времени выполнение команд и проведение циклов обмена по системной шине. Использование конвейерных технологий и быстрой кэш-памяти позволяет им ускорить процесс взаимодействия со сравнительно медленной системной памятью. Повышение тактовой частоты и совершенствование структуры процессоров дают возможность сократить время выполнения команд. Но дальнейшее увеличение быстродействия системы возможно только при совмещении пересылки данных и чтения команд, то есть при переходе к архитектуре с двумя шинами.

В случае двухшинной архитектуры обмен по обеим шинам может быть независимым, параллельным во времени. Соответственно, структуры шин (количество разрядов кода адреса и кода данных, порядок и скорость обмена информацией и т.д.) могут быть выбраны оптимально для той задачи, которая решается каждой шиной. Поэтому при прочих равных условиях переход на двухшинную архитектуру ускоряет работу микропроцессорной системы, хотя и требует дополнительных затрат на аппаратуру, усложнения структуры процессора. Память данных в этом случае имеет свое распределение адресов, а память команд – свое.

Проще всего преимущества двухшинной архитектуры реализуются внутри одной микросхемы. В этом случае можно также существенно уменьшить влияние недостатков этой архитектуры. Поэтому основное ее применение – в микроконтроллерах, от которых не требуется решения слишком сложных задач, но зато необходимо максимальное быстродействие при заданной тактовой частоте.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Архитектура фон Неймана

250px %D0%90%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D0%B0 %D1%84%D0%BE%D0%BD %D0%9D%D0%B5%D0%B9%D0%BC%D0%B0%D0%BD%D0%B0

magnify clip

Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

Читайте также:  Шевроле спарк замена ремня грм метки

Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

Содержание

Принципы фон Неймана

Принцип однородности памяти Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресуемости памяти Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен. Принцип последовательного программного управления Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип жесткости архитектуры Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Так же в некоторых источниках [каких?] указывается принцип двоичного кодирования, но существовали машины работающие с троичным и с десятичным кодом.

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти, был разработан в Школе электрических разработок Мура (англ. Moore School of Electrical Engineering ) в Университете штата Пенсильвания. Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми семью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

Узкое место архитектуры фон Неймана

См. также

Примечания

40px Wiki letter w.svg

8 бит · 16 бит · 32 бит · 64 бит · 128 бит Параллелизм

Pipeline Конвейер · In-Order & Out-of-Order execution · Переименование регистров · Speculative execution
Уровни Бит · Инструкций · Суперскалярность · Данных · Задач
Потоки Многопоточность · Simultaneous multithreading · Hyperthreading · Superthreading · Аппаратная виртуализация
Классификация Флинна SISD · SIMD · MISD · MIMD
Реализации DSP · GPU · SoC · PPU · Векторный процессор · Математический сопроцессор • Микропроцессор · Микроконтроллер Компоненты Barrel shifter · FPU · BSB · MMU · TLB · Регистровый файл · control unit · АЛУ • Демультиплексор · Мультиплексор · Микрокод · Тактовая частота • Корпус • Регистры • Кэш (Кэш процессора) Управление питанием APM · ACPI · Clock gating · Динамическое изменение частоты • Динамическое изменение напряжения

Смотреть что такое «Архитектура фон Неймана» в других словарях:

Машина фон Неймана — термины, названные в честь Джона фон Неймана, впервые рассмотревшего эти концепции, и может означать: Архитектура фон Неймана, концепцию архитектуры ЭВМ Самовоспроизводящая машина, класс машин, способных к самовоспроизведению: Универсальный… … Википедия

Фон Нейман — Джон фон Нейман в 1940 е Джон фон Нейман (англ. John von Neumann или Йоганн фон Нейман, нем. Johann von Neumann; при рождении Янош Лайош Нейман (венг. Neumann János Lajos), 28 декабря 1903, Будапешт 8 февраля 1957, Вашингтон) венгро… … Википедия

Фон Нейман, Джон — Джон фон Нейман в 1940 е Джон фон Нейман (англ. John von Neumann или Йоганн фон Нейман, нем. Johann von Neumann; при рождении Янош Лайош Нейман (венг. Neumann János Lajos), 28 декабря 1903, Будапешт 8 февраля 1957, Вашингтон) венгро… … Википедия

Архитектура компьютера — Для улучшения этой статьи желательно?: Добавить иллюстрации. Викифицировать статью. Архитектура вычислительной машины (Архитектура … Википедия

Архитектура набора команд — Эту страницу предлагается объединить с Система команд. Пояснение причин и обсуждение на странице Википедия:К объединению/6 ноября 2011. Обсуждение длится одну неделю (или дольш … Википедия

Компьютерная архитектура — Архитектура компьютера логическая организация и структура аппаратных ресурсов вычислительной системы и программного обеспечения. Это фундаментальная схема и функциональное описание требований и реализации основных узлов ЭВМ. В основе архитектуры … Википедия

Читайте также:  Уровень жидкости в акпп лансер 9

Принстонская архитектура — Схематичное изображение машины фон Неймана. Архитектура фон Неймана (англ. Von Neumann architecture) широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином … Википедия

Гарвардская архитектура — Гарвардская архитектура архитектура ЭВМ, отличительными признаками которой являются: 1. Хранилище инструкций и хранилище данных представляют собой разные физические устройства. 2. Канал инструкций и канал данных также физически разделены.… … Википедия

Нейман, Джон фон — Джон фон Нейман John von Neumann … Википедия

Источник

Архитектура фон Неймана

Архитектура фон Неймана — широко известный принцип совместного хранения команд и данных в памяти компьютера. Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти.

Содержание

История возникновения термина

Основы учения об архитектуре вычислительных машин заложил фон Нейман в 1944 году, когда подключился к созданию первого в мире лампового компьютера ЭНИАК. В процессе работы над ЭНИАКом в Институте Мура в Пенсильванском Университете во время многочисленных дискуссий фон Неймана с его коллегами Джоном Уильямом Мокли, Джоном Экертом, Германом Голдстайном и Артуром Бёрксом, возникла идея более совершенной машины под названием EDVAC. Исследовательская работа над EDVAC продолжалась параллельно с конструированием ЭНИАКа.

170px Firstdraftofrepo00vonn 0003

Помимо машин, работавших с двоичным кодом, существовали и существуют троичные машины. Троичные компьютеры имеют ряд преимуществ и недостатков перед двоичными. Среди преимуществ можно выделить быстродействие (операции сложения выполняются примерно в полтора раза быстрее), наличие двоичной и троичной логики, симметричное представление целых чисел со знаком (в двоичной логике либо будут иметь место два нуля (положительный и отрицательный), либо будет иметь место число, которому нет пары с противоположным знаком). К недостаткам — более сложная реализация по сравнению с двоичными машинами.

Ещё одной революционной идеей, значение которой трудно переоценить, является принцип «хранимой программы». Первоначально программа задавалась путём установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ЭНИАК требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут — выходили из строя лампы, которых было огромное количество. Однако программа может также храниться в виде набора нулей и единиц, причём в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но почти невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

Принципы фон Неймана

По плану, первым компьютером, построенным по архитектуре фон Неймана, должен был стать EDVAC (Electronic Discrete Variable Automatic Computer) — одна из первых электронных вычислительных машин. В отличие от своего предшественника ЭНИАКа, это был компьютер на двоичной, а не десятичной основе. Как и ЭНИАК, EDVAC был разработан в Институте Мура Пенсильванского Университета для Лаборатории баллистических исследований (англ.) Армии США командой инженеров и учёных во главе с Джоном Преспером Экертом и Джоном Уильямом Мокли при активной помощи математика, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, ознакомившись с ЭНИАКом и проектом EDVAC, сумели решить эти проблемы гораздо раньше. Первыми компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

В СССР первой полностью электронной вычислительной машиной, близкой к принципам фон Неймана, стала МЭСМ, построенная Лебедевым (на базе киевского Института электротехники АН УССР), прошедшая государственные приёмочные испытания в декабре 1951 года.

Узкое место архитектуры фон Неймана

Ram bottleneck

Данная проблема решается совершенствованием систем кэширования, что в свою очередь усложняет архитектуру систем и увеличивает риск возникновения побочных ошибок (например, в 2017 году были обнаружены уязвимости Meltdown (уязвимость) и Spectre (уязвимость), присутствовавшие в современных процессорах в течение десятилетий, но не обнаруженные ранее из-за сложности современных вычислительных систем и, в частности, их взаимодействия с кэш-памятью).

Термин «узкое место архитектуры фон Неймана» ввёл Джон Бэкус в 1977 в своей лекции «Можно ли освободить программирование от стиля фон Неймана?», которую он прочитал при вручении ему Премии Тьюринга [7] [8]

Источник

Оцените статью
Adblock
detector