Шина бесконечной мощности что это

Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе. Динамическая устойчивость станции, работающей на шины бесконечной мощности. Анализ динамической устойчивости при отключении короткого замыкания

Страницы работы

screen 1

screen 2

Содержание работы

20. Понятие динамической устойчивости системы. Основные допущения при упрощенном анализе.

Динамическая устойчивость — это способность системы приходить после большого возмущения к такому установившемуся режиму работы, при котором значения параметров режима являются допустимыми по условиям эксплуатации системы и электроснабжения потребителей.

image001

1)Нормальный режим; 2) Режим КЗ; 3) Послеаварийный режим по одноцепной линии.

Главной задачей при решении задачи динамической устойчивости явл. задача нахождения предельного угла отключения КЗ.

image002

1. Вращающийся момент синхронной машины в относительных единицах может быть принят равным мощности

image003

2.Изменения сопротивлений синхронных машин и трансформаторов, обусловленные насыщением стали, в расчетах не учитываются или учитываются приближенно путем уменьшения замещаемого сопротивления.

3.В расчетах динамической устойчивости допускается неучет апериодического тока статора и периодического тока ротора синхронных машин.

4.Предполагается, что на ротор синхронной машины действует электромагнитный момент, обусловленный только токами прямой последовательности, протекающими по статору машины.

5.В сложных системах предварительно упрощают конфигурацию сети и уменьшают число машин (путем замены нескольких генераторов и электростанций одной эквивалентной, объединения или переноса нагрузок).

7.Все изменения режима системы отражаются в изменении ее схемы, в которой вводятся новые значения сопротивлений, ЭДС синхронных машин и их механических мощностей.

21.Динамическая устойчивость станции, работающей на шины бесконечной мощности. Правило площадей и вытекающие из него критерии устойчивости.

image004

image005

В первый момент времени происходит переход с характеристики мощности 1 на характеристику 2. Из-за инерции ротора угол б не может измениться мгновенно из точки а в точку с. На валу генератора возникает избыточный момент, определяемый разностью мощности турбины и новой мощностью генератора (точка b). Под влиянием избыточного момента ротор генератора начинает ускоряться с увеличением угла б. В результате ускорения рабочая точка начинает движение по характеристике 2 в сторону точки с. В точке с избыточный момент равен нулю и скорость вращения ротора максимальна. После прохождения точки с на ротор воздействует тормозящий момент, который достигает максимума в точке d. Далее тормозящий момент заставляет рабочую точку перемещаться в точку с с уменьшением угла б. Проходя точку с ротор начинает заново ускоряться до точки b за счет избыточного момента. Далее начинается новый цикл относительного движения ротора генератора. Кривая б(t) имеет затухающий характер за счет механических и электрических потерь мощности на валу.

Площадки fabc и fcde называются площадками ускорения и торможения. Для определения максимального угла огклонения ротора бm достаточно выполнить условие Fуск=Fторм. Если максимальный угол превысит значение 6кр, то генератор выйдет из синхронизма. При этом возможная площадка торможения будет равна fcdm.

Критерий динамической устойчивости можно записать в виде следующего неравенства: Fуск=Fторм возм

22.Анализ динамической устойчивости при отключении короткого замыкания. Предельный угол отключения КЗ. Предельное время отключения.

image001В момент КЗ происходит переход с характеристики 1 на хар-ку 2. На валу генератора возникает избыточный момент, определяемый разностью мощности турбины и новой мощностью генератора (точка b). Под влиянием избыточного момента ротор генератора начинает ускоряться с увеличением угла б. В результате ускорения рабочая точка начинает движение по характеристике 2 в сторону точки с. В точке с происходит отключение КЗ при угле Рабочая точка переходит на кривую 3 послеаварийного режима. В точке е на ротор воздействует тормозящий момент, равный отрезку ed. Запаса кинетической энергии хватает до точки f. Далее тормозящий момент заставляет рабочую точку перемещаться в точку h с уменьшением угла б. Проходя точку h, ротор начинает заново ускоряться за счет избыточного момента. Далее рабочая точка колеблется вокруг точки h по характеристике 3. За счет механических и электрических потерь мощности на валу угол б установится в точке h.

Читайте также:  Хорошие видеокарты с 128 бит шиной

Согласно критерию динамической устойчивости генератор не выйдет из синхронизма до тех пор, пока точка/не превысит угла 6кр.

Медленно перемещая угол боткл в сторону увеличения, можно найти предельный угол отключения заданного КЗ боткл пред при равенстве площадок abсd и dem. Решая интегральное уравнение, предельный угол отключения КЗ

image006

При трехфазном КЗ на шинах генератора или полном разрыве (отключении) линии в формуле следует принять Рм2= 0.

image007

23.Методика расчетов динамической устойчивости сложных электрических систем. Методы численного интегрирования.

Если представить часть ЭЭС в виде системы с тремя генераторами, то активная мощность генераторов выражается в виде следующих формул:

image008

Расчет устойчивости в сложных системах в целом заключается в следующем:

1.Задаться активными и реактивными мощностями каждого генератора в нормальном режиме. Определить распределение потоков мощности в схеме. Проверить баланс активной и реактивной мощностей.

2.Составить схему замещения нормального режима, нагрузки представить постоянными сопротивлениями. Определить ЭДС электростанций и углы между ними при нормальном режиме. Подсчитать собственные и взаимные проводимости для всех станций. Записать характеристики мощности для каждого генератора.

3.Составить схемы замещения обратной и нулевой последовательности и определить результирующие сопротивления обратной и нулевой последовательности, отнесенные к точке КЗ. Подсчитать собственные и взаимные проводимости для всех станций и записать характеристики мощности для каждого генератора в аварийном режиме.

4.Составить схемы замещения послеаварийного режима. Подсчитать собственные и взаимные проводимости для всех станций и записать характеристики мощности для каждого генератора в послеаварийном режиме. Построить угловые характеристики трех режимов и определить предельный угол отключения КЗ.

5.После этого перейти к расчету угловых перемещений Зная углы расхождения роторов машин в момент КЗ, найти значения отдаваемой машинами мощности.

6.Найти избытки мощности в начале первого интервала ΔР1(0)101 и т.д.

7.Вычислить угловые перемещения роторов машин в течении первого интервала Δδ1(1)=k1 ΔР1(0)/2 и т. д.

8.Определить новые значения углов в конце первого интервала Δδ1(1)=δ1(0)— δ1(1)

Источник

Динамическая устойчивость в электроэнергетической системе

Динамическая устойчивость в электроэнергетической системе

В любой момент времени в электроэнергетической системе может возникнуть резкое нарушение квазиустановившегося режима работы, из-за короткого замыкания, включения или отключения линий электропередачи, генерирующего оборудования или электроустановок потребителя и т.п. Следствием возникшего возмущения является отклонение скоростей вращения роторов генераторов от синхронной, в результате в энергосистеме возникают качания роторов генераторов станций, что ведет к возникновению качаний перетоков активной и реактивной мощности, а также напряжений и токов. Если возникающие колебания затухают, то считается, что динамическая устойчивость сохраняется, в противном случае – динамическая устойчивость нарушается.

Под понятием динамической устойчивости понимают способность энергосистемы переходить от исходного устойчивого режима к другому, также устойчивому режиму либо вернуться к установившемуся режиму, близкому к исходному, после больших изменений ее параметров.

Основным методом исследования динамической устойчивости электрических систем на современном этапе является численное интегрирование дифференциальных уравнений, описывающих поведение системы. Но существует более простой и наглядный метод, основанный на энергетическом подходе к анализу динамической устойчивости, который называется методом площадей. В данном методе кинетическая энергия системы определяется по площади графика переходного процесса. Задача исследования заключается в сравнении площадей ускорения и торможения, то есть сравнения кинетической энергии, полученной в процессе ускорения ротора генератора с той энергией, которая расходуется в процессе торможения ротора.

Читайте также:  Что нужно замкнуть на стартере чтобы завести

В качестве примера рассмотрим короткое замыкание с отключением параллельной линии электропередачи в простейшей схеме сети, которая состоит из генератора, работающего через силовой трансформатор и двухцепную линию электропередачи на шины бесконечной мощности (см. рис.1).

image001

Рис.1. Расчетная схема сети

Если сделать допущение о том, что на генераторе установлено АРВ СД, которое контролирует напряжение на стороне генераторного напряжения, а также пренебречь активными сопротивлениями в расчетной схеме сети, то электромагнитная мощность, которая передается от генератора, определяется следующим выражением:

image002

В записанном выражении переменная image003представляет собой модуль линейного напряжения на шинах станции, приведенный к стороне ВН, а переменная image004— модуль линейного напряжения в точке шин бесконечной мощности.

image005

Рис.2. Векторная диаграмма напряжений

В доаварийном режиме работы генератор работает в режиме, который соответствует точке «а», расположенной на угловой характеристике для нормального режима работы (Н.Р.). В рассматриваемом примере мощность турбины принимается неизменной за всё время переходного процесса image008, так как регулятор скорости не успевает за это время изменить мощность, развиваемую турбин.

В некоторый момент времени возникает короткое замыкание, которое вызывает снижение напряжение в сети. Короткое замыкание в расчетной сети, моделируется шунтом короткого замыкания на землю. В зависимости от вида короткого замыкания (однофазное, двухфазное, двухфазное с землей или трехфазное) величина шунта меняется.

image009

Рис.3. Угловая характеристика в нормальном (I), аварийном (II) и послеаварийном (III) режимах

В результате короткого замыкания отдаваемая мощность в сеть уменьшается: происходит переход электромагнитной мощности из точки «а» характеристики нормального режима в точку «b» характеристики аварийного режима (А.Р.). Такое скачкообразное изменение активной мощности между двумя характеристиками происходит из-за того, что угол δ мгновенно измениться не может вследствие инерции ротора. В результате на валу системы турбина-генератор возникает избыточный ускоряющий момент, обусловленный разностью моментов (мощностей) турбины и электромагнитной мощности генератора. Под влиянием ускоряющего момента ротор генератора начнет ускоряться относительно энергосистемы (вектор напряжения image003будет перемещаться относительно вектора напряжения image007). В результате взаимный угол image006будет увеличиваться и величина электромагнитной мощности перейдет из точки «b» в точку «c».

В точке «с» происходит отключение поврежденной линии электропередачи действием устройств РЗА. После отключения КЗ электромагнитная мощность переходит на характеристику послеаварийного режима (П.А.Р.): происходит переход электромагнитной мощности из точки «c» характеристики аварийного режима (А.Р.) в точку «d» характеристики послеаварийного режима (П.А.Р.). В рассматриваемом примере в точке «d» электромагнитная мощность меньше мощности турбины, поэтому на ротор будет продолжать действовать ускоряющий момент (частота вращения ротора будет расти).

В точке «e» выдаваемая мощность в сеть становится равной мощности турбины, однако в связи с тем, что ротор приобрел некоторую избыточную кинетическую энергию, он продолжит увеличивать скорость вращения. В случае, когда выдаваемая мощность генератора в сеть становится больше мощности турбины, на валу системы турбина-генератор возникает избыточный тормозящий момент, который снижает скорость вращения ротора. В некоторой точке «i» генератор израсходует запасенную кинетическую энергию и ротор начнет перемещаться в обратном направлении. После нескольких колебаний с постепенно затухающей амплитудой относительное движение ротора прекратится и генератор перейдёт в новый установившийся режим работы. Если же ротор пройдёт за точку, соответствующую углу image010, то избыточный момент вновь станет ускоряющим и генератор выйдет из синхронизма.

Читайте также:  Тихие зимние нешипованные шины 2015

Работа сил на пути ускорения выражается интегралом:

image011

Заштрихованная площадь криволинейной фигуры «abcde», называется площадью ускорения, и соответствует (эквивалентна) энергии, запасаемой ротором в процессе ускорения.

Работа сил на пути торможения выражается интегралом, аналогично:

image012

Заштрихованная площадь криволинейной фигуры «efghij», называется площадью торможения, и соответствует (эквивалентна) энергии, теряемой ротором в процессе торможения.

Таким образом, система будет сохранять устойчивость тогда, когда возможная площадь торможения image013будет больше площади ускорения image014. Если площадка ускорения будет превышать площадь торможения, то генератор выпадет из синхронизма с приемной системой. Приведенный метод оценки динамической устойчивости электроэнергетической системы получил название метода площадей.

Мероприятия по повышению динамической устойчивости

1.Снижения длительности короткого замыкания, которая обеспечивается с помощью применения современных устройств РЗА и выключателей. Время отключения короткого замыкания (работа устройств РЗА и время отключения выключателя) может достигать 40-50 мсек.

2.Форсировка возбуждения на генераторах, также способствует повышению устойчивости. Форсировка возбуждения вводится в работу при глубоком снижении напряжения генератора вследствие короткого замыкания. Форсировка повышает ЭДС генераторов и напряжение на шинах электростанции, что приводит к уменьшению сброса электрической мощности.

image015

Рис.4. Изменение напряжения возбуждения при форсировке возбуждения

Важными технические характеристики системы возбуждения генераторов являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке, и кратность форсировки, которая определяется отношением потолочного напряжения к номинальному напряжению возбуждения.

3.Эффективным средством повышения устойчивости являются все виды автоматического повторного включения (АПВ). Успешное АПВ увеличивает площадку торможения. Отключение части генерирующего оборудования в передающей части энергосистемы. Данное мероприятие приводит к снижению мощности турбины от исходной мощности, что приводит к увеличению максимальной площадки торможения. Одновременно происходит увеличение критического угла δ. Чтобы исключить нежелательное снижение частоты в энергосистеме, ограничение мощности генераторов в передающей части энергосистемы выполняется совместно с отключением части потребителей в приемной ее части.

4.Применение кратковременной импульсной разгрузки тепловых турбин (ИРТ) через систему регулирования является эффективным средством повышения устойчивости.Импульсная разгрузка турбины применяется с целью компенсации избыточной кинетической энергии, приобретенной за время короткого замыкания и бестоковой паузы БАПВ (ОАПВ).

image016

Рис.5. Импульсная разгрузка турбины через электрогидравлический преобразователь

Для выполнения импульсной разгрузки тепловые турбины оборудуются специальными электрогидравлическими преобразователями (ЭГП), которые преобразуют электрические сигналы в гидравлические воздействия на систему регулирования частоты вращения. Электрогидравлический преобразователь обеспечивает быстрый ввод в систему регулирования сигнала разгрузки. После снятия сигнала разгрузки система регулирования восстанавливает мощность турбины до первичного значения. Глубина и скорость разгрузки зависят от параметров регулирующего импульса: амплитуды и длительности. Характеристики 1 и 2 соответствуют импульсам различной амплитуды и длительности. Снижение мощности турбины начинается с запаздывания 0,15 – 0,2 сек., обусловленным инерционностью элементов гидравлической системы регулирования. Минимальное значение мощности достигается через 0,5 – 0,7 сек. после подачи импульса регулирования.

Для снижения мощности турбины в послеаварийном режиме воздействие через ЭГП дополняется воздействием на ограничение мощности турбины (ДРТ) через механизм управления турбиной (МУТ). Характеристика 3 соответствует разгрузки турбины через ЭГП и МУТ, которая позволяет снизить мощность турбины в послеаварийном режиме до величины image017. Данное действие применяется для устранения перегрузки оборудования в послеаварийном режиме в передающей части энергосистемы.

Источник

Оцените статью
Adblock
detector