Шина алюминиевая сечение и номинальный ток

Содержание
  1. ГОСТ 15176-89. Шины алюминиевые электротехнические прессованные
  2. Сфера действия стандарта ГОСТ 15176-89
  3. Геометрические и массовые характеристики прессованных алюминиевых шин по ГОСТ 15176
  4. Технические характеристики электротехнических шин согласно ГОСТ 15176-89
  5. Токовые нагрузки на алюминиевые шины
  6. ПУЭ Раздел 1 => Таблица 1.3.31. допустимый длительный ток для шин прямоугольного сечения.
  7. Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
  8. Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
  9. Особенности и применение медных шин
  10. Перфорация медной и алюминиевой шины
  11. Особенности подбора медных шин
  12. Проверка шин на термическую устойчивость
  13. Достоинства медных шин
  14. Гибка медной и алюминиевой шины
  15. Допустимые нагрузки по току на медные шины
  16. Допустимый длительный ток для шин прямоугольного сечения
  17. Способы расчёта сечения кабелей
  18. Расчёт сечения по нагреву
  19. Расчёт сечения по допустимым потерям напряжения
  20. Рубка медной и алюминиевой шины
  21. Таблица сечения кабеля по мощности и току

ГОСТ 15176-89. Шины алюминиевые электротехнические прессованные

Ссылка для скачивания нормативного документа на шины электротехнические ГОСТ 15176 от 1989 года.

Поставка электротехнической алюминиевой шины по всей территории Украины. Изготовление под заказ в течение 2 недель – это предельный срок, зачастую быстрее. Минимальный заказ 8 кг – технологическое ограничение, так как разогретую заготовку данной массы продавливают через фильеру.

Сфера действия стандарта ГОСТ 15176-89

Стандарт ГОСТ 15176-89 приводит технические требования к электротехническим шинам, которые выливаются из алюминия и его сплавов. Содержит указания для приёмки, ссылки на стандарты, описывающие методики испытаний и способы транспортировки и хранения изделий из алюминия,

Геометрические и массовые характеристики прессованных алюминиевых шин по ГОСТ 15176

В таблице 1 описываемого нормативного документа указываются все возможные вариации размеров шины, просчитаны площадь сечения и погонная масса 1 метра.

Tyre

Масса высчитывается по формуле: m = S · l · ρ,
где S = B · H – площадь сечения;
l – длина необходимой электротехнической шины;
ρ = 2,71 г / см 3 – плотность алюминия одинаковая для сплавов и нескольких марок алюминия.

Изменим формулу, чтобы учесть приведение всех длин в метры и массу в килограммы:
m = B · H · l · 2,71 / 1000 (получается масса в килограммах),
где B и H (ширина и толщина) подставляются в миллиметрах, l (длина) в метрах.

В таблице 2 указываются минимальные и максимальные отклонения размеров поперечного сечения от заявленных.
Таблица 3 приводит числовые значения радиусов скруглений углов (R) алюминиевой шины.

Шины производят длиной от 3 до 10 метров в зависимости от площади сечения.

Технические характеристики электротехнических шин согласно ГОСТ 15176-89

Шины не должны иметь: пятен возникших вследствие коррозии, инородных включений, расслоений и растрескиваний.
Шины могут иметь: остатки технологической смазки, локальные потемнения и просветления, пузыри, механические повреждения (вмятины, риски, задиры, царапины), которые не выводят фактические размеры за допустимые.
Срез алюминиевой шины может иметь скос до 5°.

Электрическое сопротивление постоянному току при t = +20°С при размерах S = 1 мм 2 и l = 1 м:

Токовые нагрузки на алюминиевые шины

Алюминиевые шины способны проводить силы тока, указанные в таблице.
Значения получены для эксплуатации при температуре окружающей среды +25°С, в случае предельной температуры нагрева шины до +70°С.

Следует учитывать расположение алюминиевой шины в пространстве. При установке на большую сторону (горизонтально), скорость охлаждения алюминия падает, следовательно, сила проводимого тока снижается на 5% для шин с шириной менее 60 мм и на 8% для шинопроводов с шириной более 60 мм.
В числителе указывается сила тока при переменном напряжении, в знаменателе указана токовая нагрузка при постоянном токе.

Токовая нагрузка на алюминиевую шину при числе полос от 1 до 4:

Размеры, мм Сила тока, ампер
Ширина Толщина 1 2 3 4
15 3 165
20 3 215
25 3 265
30 4 365 / 370
40 4 480 — / 855
40 5 540 / 545 — / 965
50 5 665 / 670 — / 1180 — / 1470
50 6 740 / 745 — / 1315 — / 1655
60 6 870 / 880 1350 / 1555 1720 / 1940
80 6 1150 / 1170 1630 / 2055 2100 / 2460
100 6 1425 / 1455 1935 / 2515 2500 / 3040
60 8 1025 / 1040 1680 / 1840 2180 / 2330
80 8 1320 / 1355 2040 / 2400 2620 / 2975
100 8 1625 / 1690 2390 / 2945 3050 / 3620
120 8 1900 / 2040 2650 / 3350 3380 / 4250
60 10 1155 / 1180 2010 / 2210 2650 / 2720
80 10 1480 / 1540 2410 / 2735 3100 / 3440
100 10 1820 / 1910 2860 / 3350 3650 / 4160 4150 / 4400
120 10 2070 / 2300 3200 / 3900 4100 / 4860 4650 / 5200
Читайте также:  Что делать если закис шаровый кран

Источник

ПУЭ Раздел 1 => Таблица 1.3.31. допустимый длительный ток для шин прямоугольного сечения.

lazy placeholder lazy placeholder lazy placeholder lazy placeholder

Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:

При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.

При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).

Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80

Ток, А, для проводов марок

Номинальное сечение,мм 2 Сечение (алюминий/сталь), мм 2 М А и АКП М А и АКП
вне помещений внутри помещений
10 10/1,8 84 53 95 60
16 16/2,7 111 79 133 105 102 75
25 25/4,2 142 109 183 136 137 106
35 35/6,2 175 135 223 170 173 130
50 50/8 210 165 275 215 219 165
70 70/11 265 210 337 265 268 210
95 95/16 330 260 422 320 341 255
120/19 390 313 485 375 395 300
120 120/27 375
150/19 450 365 570 440 465 355
150 150/24 450 365
150/34 450
185/24 520 430 650 500 540 410
185 185/29 510 425
185/43 515
240/32 605 505 760 590 685 490
240 240/39 610 505
240/56 610
300/39 710 600 880 680 740 570
300 300/48 690 585
300/66 680
330 330/27 730
400/22 830 713 1050 815 895 690
400 400/51 825 705
400/64 860
500/27 960 830 980 820
500 500/64 945 815
600 600/72 1050 920 1100 955
700 700/86 1180 1040

Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений

Диаметр, мм
медные алюминиевые Внутренний и наружный диаметры, мм Ток, А Внутренний и наружный диаметры, мм Ток, А Условный проход, мм Толщина стенки, мм Наружный диаметр, мм без разреза с продольным разрезом
6 155/155 120/120 12/15 340 13/16 295 8 2,8 13,5 75
7 195/195 150/150 14/18 460 17/20 345 10 2,8 17,0 90
8 235/235 180/180 16/20 505 18/22 425 15 3,2 21.3 118
10 320/320 245/245 18/22 555 27/30 500 20 3,2 26,8 145
12 415/415 320/320 20/24 600 26/30 575 25 4,0 33,5 180
14 505/505 390/390 22/26 650 25/30 640 32 4,0 42,3 220
15 565/565 435/435 25/30 830 36/40 765 40 4,0 48,0 255
16 610/615 475/475 29/34 925 35/40 850 50 4,5 60,0 320
18 720/725 560/560 35/40 1100 40/45 935 65 4,5 75,5 390
19 780/785 605/610 40/45 1200 45/50 1040 80 4,5 88,5 455
20 835/840 650/655 45/50 1330 50/55 1150 100 5,0 114 670 770
21 900/905 695/700 49/55 1580 54/60 1340 125 5,5 140 800 890
22 955/965 740/745 53/60 1860 64/70 1545 150 5,5 165 900 1000
25 1140/1165 885/900 62/70 2295 74/80 1770
27 1270/1290 980/1000 72/80 2610 72/80 2035
28 1325/1360 1025/1050 75/85 3070 75/85 2400
30 1450/1490 1120/1155 90/95 2460 90/95 1925
35 1770/1865 1370/1450 95/100 3060 90/100 2840
38 1960/2100 1510/1620
40 2080/2260 1610/1750
42 2200/2430 1700/1870
45 2380/2670 1850/2060

Особенности и применение медных шин

Для производства электротехнических шин используются полосы меди высшей степени очистки от примесей. Также для изготовления продукции применяются проводники с круглым сечением, переплетенные между собой. Основное применение шин – производство комплектующих для электрооборудования и изготовление электротехнических деталей.

Читайте также:  Удаление больших вмятин с авто

Пользуются спросом следующие виды медных шин:

Кроме указанных сортов материала, на рынке пользуются спросом и другие виды электротехнических медных шин. Универсальная в использовании продукция не подвергается коррозии и окислению, хорошо обрабатывается, обладает конструктивной универсальностью.

Перфорация медной и алюминиевой шины

Для соединения шин в шинопроводе между собой, а также для подключения питающих и отходящих линий в шине размечают и перфорируют отверстия соответствующего диаметра с применением шинного перфоратора. Расстояние между отверстиями рассчитывается таким образом, чтобы наконечники присоединений не касались друг друга и было удобно выполнять присоединение, а впоследствии, во время эксплуатации электроустановки, протяжку болтовых соединений.

lazy placeholder

Соединение шин и подключение кабелей выполняется с помощью болтов и гаек исключительно с тарельчатыми шайбами. Применение шайб типа «гровер» крайне не рекомендуется, поскольку при сильном нагреве (например КЗ), гровер теряет свои пружинящие свойства, вследствие чего болтовое соединение становится ненадежным, переходное сопротивление т в месте присоединения увеличивается.

Особенности подбора медных шин

Визуально электротехническая шина из меди имеет форму бруска с сечением в виде прямоугольника. Можно сравнить изделие с листом металла увеличенной длины и толщины. Стандартные размеры ширины бруска составляют от 8 до 250 мм. Минимальная и максимальная толщина равняется 1,2 и 80 мм соответственно.

При выборе электротехнических шин из медных сплавов учитываются следующие критерии:

Надежность в эксплуатации медных шин, выполненных в соответствии с требованиями нормативных документов, подтверждена на практике. Качественный материал без посторонних примесей полностью соответствует заявленным характеристикам.

Проверка шин на термическую устойчивость

2.1. Определяем тепловой импульс, который выделяется при токе короткого замыкания по выражению 3.85 [Л2, с.190]:

lazy placeholder

2.1.1. Определяем полное время отключения КЗ по выражению 3.88 [Л2, с.191] и согласно пункта 4.1.5 ГОСТ Р 52736-2007:

tоткл.= tр.з.+ tо.в=0,1+0,07=0,18 сек.

lazy placeholder

2.2. Определяем минимальное сечение шин по термической стойкости при КЗ по выражению 3.90 [Л2, с.191]:

где: С – функция, значения которой приведены в таблице 3.14. Для алюминиевых шин С = 91.

lazy placeholder

Как мы видим ранее принята алюминиевая шина сечением 80х10 мм – термически устойчива.

Достоинства медных шин

Медные электротехнические шины по стоимости дороже алюминиевых аналогов, но выигрывают по основным техническим характеристикам. Приобретение шинопроводов из меди выгодно по следующим причинам:

Объективные достоинства продукции позволяют собирать на основе медных электротехнических шин распределительные установки с компактными габаритами. Использование подобных изделий становится все более востребованным и актуальным.

Гибка медной и алюминиевой шины

lazy placeholder

Гибка шины производится на специализированных гидравлических гибочных станках. Предварительно на шину наносится разметка, позволяющая точно позиционировать в станке место гиба. В процессе гибки контролируется угол гиба, что позволяет точно воспроизводить шины по заданному размеру.

Угол гиба может быть различным и обусловлен лишь местами соединений и подключений шин, а также удобством сборки и последующего обслуживания.

Для изменения направления плоскости шины применяется продольное скручивание на 90º.

lazy placeholder

Специалисты нашего Производства с удовольствием выполнят гибку шин по Вашим чертежам и заданиям.

Допустимые нагрузки по току на медные шины

При выборе шинопровода покупателю не требуется рассчитывать параметры изделия. Достаточно знать максимально допустимый ток в системе, постоянный или переменный. ПО приведенной ниже таблице можно подобрать подходящее сечение электротехнической шины и купить продукцию в необходимом объеме.

Сечение шинопровода Постоянный ток, А Переменный ток, А
Медная электротехническая шина 15×3 210 210
Медная электротехническая шина 20×3 275 275
Медная электротехническая шина 25×3 340 340
Медная электротехническая шина 30×4 475 475
Медная электротехническая шина 40×4 625 625
Медная электротехническая шина 40×5 705 700
Медная электротехническая шина 50×5 870 860
Медная электротехническая шина 50×6 960 955
Медная электротехническая шина 60×6 1145 1125
Медная электротехническая шина 60×8 1345 1320
Медная электротехническая шина 60×10 1525 1475
Медная электротехническая шина 80×6 1510 1480
Медная электротехническая шина 80×8 1755 1690
Медная электротехническая шина 80×10 1990 1900
Медная электротехническая шина 100×6 1875 1810
Медная электротехническая шина 100×8 2180 2080
Медная электротехническая шина 100×10 2470 2310
Медная электротехническая шина 120×8 2600 2400
Медная электротехническая шина 120×10 2950 2650

Компания НТЦМ предлагает купить электротехнические медные шины в большом ассортименте. На складе предприятия представлена продукция в различных типоразмерах. Отличные технические характеристики, конкурентоспособная стоимость, сжатые сроки доставки изделий в любой регион страны – основные преимущества заказа электротехнических шинопроводов в НТЦМ.

Читайте также:  Что случится когда порвется ремень грм ваз

Допустимый длительный ток для шин прямоугольного сечения

Размеры, мм Медные шины Алюминиевые шины Стальные шины
Ток*, А, при количестве полос на полюс или фазу Размеры, мм Ток*, А
1 2 3 4 1 2 3 4
15 х 3 210 165 _ 16×2,5 55/70
20 х 3 275 215 20×2,5 60/90
25 х 3 340 265 25 х 2,5 75/110
30 х 4 475 365/370 20 х 3 65/100
40 х 4 625 -/1090 480 -/855 25 х 3 80/120
40х 5 700/705 -/1250 540/545 -/965 30х 3 95/140
50х 5 860/870 -/1525 -/1895 665/670 -/1180 -/1470 40×3 125/190
50×6 955/960 -/1700 -/2145 740/745 -/1315 -/1655 50×3 155/230″
60×6 1125/1145 1740/1990 2240/2495 870/880 1350/1555 1720/1940 60 х 3 185/280
80×6 1480/1510 2110/2630 2720/3220 1150/1170 1630/2055 2100/2460 70 х 3 215/320
100×6 1810/1875 2470/3245 3170/3940 1425/1455 1935/2515 2500/3040 75 х 3 230/345
60 х 8 1320/1345 2160/2485 2790/3020 1025/1040 1680/1840 2180/2330 80 х 3 245/365
80 х 8 1690/1755 2620/3095 3370/3850 1320/1355 2040/2400 2620/2975 90×3 275/410
100×8 2080/2180 3060/3810 3930/4690 1625/1690 2390/2945 3050/3620 100×3 305/460
120×8 2400/2600 3400/4400- 4340/5600 1900/2040 2650/3350 3380/4250 20×4 70/115
60 х 10 1475/1525 2560/2725 3300/3530 1155/1180 2010/2110 2650/2720 22 х 4 75/125
80 х 10 1900/1990 3100/3510 3990/4450 1480/1540 2410/2735 3100/3440 25 х 4 85/140
100 х 10 2310/2470 3610/4325 4650/5385 5300/6060 1820/1910 2860/3350 3650/4160 4150/4400 30×4 100/165
120 х 10 2650/2950 4100/5000 5200/6250 5900/6800 2070/2300 3200/3900 4100/4860 4650/5200 40×4 130/220
50×4 165/270
60×4 195/325
70×4 225/375
80×4 260/430
90х 4 290/480
100×4 325/535

*В числителе приведены значения переменного тока, в знаменателе — постоянного.

Способы расчёта сечения кабелей

Есть два способа определения необходимого сечения кабеля. При расчёте необходимо применять оба метода и использовать большую из полученных величин.

Расчёт сечения по нагреву

Во время протекания электрического тока по кабелю он греется. Допустимая температура нагрева и сечение провода зависят от типа изоляции и способов прокладки. При недостаточном сечении токопроводящей жилы она нагревается до недопустимой температуры, что может привести к разрушению изоляции, короткому замыканию и пожару.

Совет! Для тщательного расчёта необходимо использовать специальные таблицы, программы или онлайн-калькуляторы, но для большинства практических задач допускается применить таблицу, которую можно найти в ПУЭ, п. 1.3.10.

Расчёт сечения по допустимым потерям напряжения

Токопроводящая жила в проводе обладает сопротивлением и при прохождении по ней тока, согласно закону Ома, происходит падение напряжения. Величина этого падения растёт при уменьшении сечения кабеля и увеличении его длины.

При прокладке кабеля большой длины его сечение, необходимое для уменьшения потерь, может многократно превышать величину, выбранную по допустимому нагреву. Для расчёта используются специальные формулы, программы и онлайн-калькуляторы.

Совет! При подключении устройств, работающих на пониженном напряжении, блок питания располагается как можно ближе к аппарату.

Рубка медной и алюминиевой шины

Обрезка шин по требуемому размеру также осуществляется с помощью специализированного гидравлического оборудования — гильотин, называемых также шинорезами.

Перед резкой шина размечается и фиксируется на станине гильотины. Рез получается ровным и практически не требует дополнительной обработки.

lazy placeholder

Для заказа резки шин Вам необходимо указать их сечение и требуемые размеры изделий.

Таблица сечения кабеля по мощности и току

Обычно для практических нужд достаточно использовать таблицу сечения кабеля, которая находится в Правилах Устройства Электроустановок в таблицах 1.3.4 и 1.3.5.

Также можно использовать следующие таблицы.

lazy placeholder

Для гибкого шнура и кабеля с медной жилой (ПВС, ШВВП, КГ)

lazy placeholder

Для силового кабеля с медной жилой (ВВГ)

lazy placeholder

Для силового кабеля с алюминиевой жилой (АВВГ)

В этих таблицах указаны необходимые сечения алюминиевых и медных кабелей для различных токовых нагрузок и условий прокладки. Тип изоляции — резиновая и виниловая, аналогичен большинству видов изоляционных материалов.

Выбор производится по номинальному току нагрузки. Если ток неизвестен, то он вычисляется исходя из мощности устройства, количества фаз и напряжения сети.

Источник

Оцените статью
Adblock
detector